
Script BASIC
Command and Function Reference

Peter Verhas

Version: November 27, 2014

This page intentionally left blank

ScriptBasic
Command and Function Reference

i

Contents

List of Commands by Sections .. 1
array .. 1
error... 1
errord... 1
file.. 1
loop ... 1
math .. 2
misc... 2
pattern ... 2
planned ... 3
process.. 3
string ... 3
test .. 4
time ... 4

Commands ... 5
ABS ... 5
ACOS .. 5
ACOSECANT.. 5
ACTAN .. 5
ADDDAY ... 6
ADDHOUR .. 6
ADDMINUTE... 6
ADDMONTH ... 7
ADDRESS(myFunc()) ... 7
ADDSECOND ... 8
ADDWEEK .. 8
ADDYEAR... 8
ASC(string).. 9
ASECANT ... 9
ASIN.. 9
ATAN... 9
ATN ... 10
BIN .. 10
BINMODE [# fn] | input | output .. 10
CALL subroutine ... 10
CHDIR directory .. 11
CHOMP() .. 11
CHR(code) .. 11
CINT.. 12
CLOSE [#] fn ... 12
CLOSE DIRECTORY [#] dn.. 12
COMMAND()... 13
Concatenate operator &.. 13
CONF("conf.key").. 13
COS .. 14

ScriptBasic
Command and Function Reference

ii

COSECANT .. 15
COTAN.. 15
COTAN2.. 15
CRYPT(string,salt) .. 15
CURDIR().. 15
CVD... 15
CVI .. 16
CVL ... 16
CVS... 16
DAY... 16
DECLARE COMMAND function ALIAS cfun LIB library ... 17
DECLARE SUB function ALIAS cfun LIB library... 17
DELETE file/directory_name... 18
DELTREE file/directory_name .. 19
DO... 19
DO UNTIL condition.. 20
DO WHILE condition... 21
END... 21
ENVIRON("envsymbol") or ENVIRON(n) ... 21
EOD(dn) .. 23
EOF(n) .. 23
ERROR() or ERROR n ... 23
ERROR$() or ERROR$(n) .. 24
EVEN .. 24
EXECUTE("executable_program", time_out,pid_v) .. 24
EXIT FUNCTION... 25
EXIT SUB.. 25
EXP ... 25
FALSE... 25
FILEACCESSTIME(file_name) ... 26
FILECOPY filename,filename ... 26
FILECREATETIME(file_name) ... 27
FILEEXISTS(file_name).. 27
FILELEN(file_name).. 27
FILEMODIFYTIME(file_name) .. 27
FIX... 27
LOCK # fn, mode .. 28
FOR var=exp_start TO exp_stop [STEP exp_step] .. 29
FORK().. 32
FORMAT()... 33
FORMATDATE ... 34
FILEOWNER(FileName)... 34
FRAC .. 35
FREEFILE()... 35
FUNCTION fun() ... 35
GCD .. 36
GMTIME.. 36
GMTOLOCALTIME... 36
GOSUB label... 36
GOTO label ... 37
HCOS.. 37

ScriptBasic
Command and Function Reference

iii

HCOSECANT.. 38
HCTAN.. 38
HEX(n) .. 38
HOSTNAME() ... 38
HOUR.. 38
HSECANT ... 38
HSIN.. 39
HTAN .. 39
ICALL n,v1,v2, ... ,vn... 39
IF condition THEN... 39
IMAX ... 40
IMIN... 40
INPUT(n,fn) ... 41
INSTR(base_string,search_string [,position]) .. 41
INSTRREV(base_string,search_string [,position]) ... 42
INT .. 42
ISARRAY .. 43
ISDEFINED ... 43
ISDIRECTORY(file_name).. 43
ISEMPTY .. 43
ISINTEGER... 44
ISNUMERIC .. 44
ISREAL ... 44
ISFILE(file_name) ... 45
ISSTRING ... 45
ISUNDEF .. 45
JOIN(joiner,str1,str2,...)... 45
JOKER(n).. 45
KILL(pid).. 46
LBOUND ... 46
LCASE() .. 47
LCM... 47
LEFT(string,len) .. 47
LEN()... 47
v = expression... 48
v &= expression .. 48
v /= expression.. 48
v \= expression.. 49
v -= expression.. 49
v += expression... 49
v *= expression ... 50
string LIKE pattern .. 50
LINE INPUT .. 50
LOC() .. 51
LOCATLTOGMTIME... 52
LOCK # fn, mode .. 52
LOCK REGION # fn FROM start TO end FOR mode... 53
LOF()... 53
LOG... 54
LOG10... 54
LTRIM() ... 55

ScriptBasic
Command and Function Reference

iv

MAX .. 55
MAXINT... 55
MID(string,start [,len]) ... 55
MIN.. 55
MININT.. 55
MINUTE .. 56
MKD .. 56
MKDIR directory_name... 56
MKI.. 57
MKL... 57
MKS .. 57
MONTH ... 57
NAME filename,filename .. 57
NEXTFILE(dn)... 58
NOW ... 58
OCT(n) .. 58
ODD .. 58
ON ERROR GOTO [label | NULL] .. 59
ON ERROR RESUME [label | next].. 59
OPEN file_name FOR mode AS [#] i [LEN=record_length] .. 59
OPEN DIRECTORY dir_name PATTERN pattern OPTION option AS dn 61
OPTION symbol value .. 63
OPTION("symbol") .. 63
pack("format",v1,v2,...,vn) ... 63
PAUSE .. 64
PI ... 65
POP... 65
POW.. 65
PRINT [# fn ,] print_list .. 65
RANDOMIZE... 66
ref v1 = v2 ... 66
REPEAT.. 67
REPLACE(string, string, string [,number] [,position]).. 68
RESET .. 68
RESET DIRECTORY [#] dn.. 68
RESUME [label | next] .. 68
RETURN ... 69
REWIND [#]fn.. 69
RIGHT(string,len) .. 69
RND .. 69
ROUND ... 70
RTRIM() .. 70
SEC... 70
SECANT.. 71
SEEK fn,position ... 71
SET FILE filename parameter=value.. 71
SET JOKER "c" TO "abcdefgh..." ... 72
SET WILD "c" TO "abcdefgh..." .. 73
SIN .. 73
SLEEP(n) .. 73
SPACE(n).. 74

ScriptBasic
Command and Function Reference

v

SPLIT string BY string TO var_1,var_2,var_3,...,var_n ... 74
SPLITA string BY string TO array ... 74
SPLITAQ string BY string QUOTE string TO array .. 74
SQR .. 75
STOP .. 76
STR(n)... 76
STRING(n,code) ... 76
STRREVERSE(string) .. 77
SUB fun() .. 77
swap a,b.. 77
SYSTEM(executable_program) .. 77
TAN ... 78
TAN2 ... 78
TEXTMODE [# fn] | input | output .. 78
TIMEVALUE.. 79
TRIM() ... 79
TRUE .. 79
TRUNCATE fn,new_length ... 79
TYPE... 80
UBOUND... 80
UCASE() ... 81
UNDEF variable .. 81
UNPACK string BY format TO v1,v2,...,vn.. 81
VAL ... 81
WAITPID(PID,ExitCode) ... 82
WEEKDAY .. 82
WHILE condition ... 82
YEAR .. 83
YEARDAY ... 83

Reserved Words ... 85
Reserved Words - not yet implemented ... 91

Appendix A: ASCII table..95
Control Codes ... 95
Standard (7-bit) Character Set.. 96
Extended (8-bit) Character Set ... 99

ScriptBasic
Command and Function Reference

vi

This page intentionally left blank

ScriptBasic
Command and Function Reference

1

List of Commands by Sections

array

ISARRAY() LBOUND() UBOUND()

error

ERROR ON ERROR GOTO ON ERROR RESUME
RESUME STOP

errord

ERRORD

file

BINMODE CLOSE CLOSE DIRECTORY
CRYPT() DELETE DELTREE
EOD() EOF FILEACCESSTIME()
FILECOPY FILECREATETIME() FILEEXISTS()
FILELEN() FILEMODIFYTIME() LOCK
FOWNER FREEFILE INPUT()
ISDIRECTORY() ISFILE() LINE INPUT
LOC() LOCK LOF()
MKDIR NAME NEXTFILE()
OPEN PRINT RESET
RESET DIRECTORY REWIND SEEK
SET FILE TEXTMODE TRUNCATE

loop

DO DOUNTIL DOWHILE
FOR REPEAT WHILE

ScriptBasic
Command and Function Reference

2

math

ABS() ACOS() ASIN()
CINT() COS() EVEN()
EXP() FALSE FIX()
FRAC() GCD() INT()
LCM() LOG() LOG10()
MAXINT MININT ODD()
PI POW() RANDOMIZE
RND() ROUND() SIN()
SQR() TRUE VAL()

misc

ADDRESS() CALL CHDIR
CHDIR CHDIR COMMAND()
CRYPT() CRYPT() CRYPT()
CURDIR CURDIR CURDIR
DECLARE COMMAND DECLARE
SUB END ENVIRON()
EXIT FUNCTION EXIT
SUB FUNCTION GOSUB
GOTO HOSTNAME() HOSTNAME()
HOSTNAME() ICALL IF
LET LETC LETD
LETI LETM LETP
LETS OPTION OPTION()
PAUSE POP REF
RETURN SLEEP() SLEEP()
SLEEP() STOP SUB
SWAP UNDEF

pattern

JOKER() LIKE
SET [NO] JOKER SET [NO] WILD

ScriptBasic
Command and Function Reference

3

planned

ACOSECANT() ACTAN() ASECANT()
ATAN() ATN() BIN()
COSECANT() COTAN() COTAN2()
CVD() CVI() CVL()
CVS() HCOS() HCOSECANT()
HCTAN() HSECANT() HSIN()
HTAN() IMAX() IMIN()
MAX() MIN() MKD()
MKI() MKL() MKS()
SECANT() TAN() TAN2()

process

EXECUTE() FORK() KILL()
SYSTEM() WAITPID()

string

ASC() CHOMP() CHR()
& CONF() FORMAT()
HEX() INSTR() INSTRREV()
ISSTRING() JOIN() JOKER()
LCASE() LEFT() LEN()
LIKE LTRIM() MID()
OCT() PACK() REPLACE()
RIGHT() RTRIM() SET [NO] JOKER
SET [NO] WILD SPLIT SPLITA
SPACE() STR() STRING()
SPLITAQ TRIM() UCASE()
STRREVERSE() UNPACK

ScriptBasic
Command and Function Reference

4

test

EVEN() ISARRAY() IsDefined()
ISEMPTY() ISINTEGER() ISNUMERIC()
ISREAL() ISSTRING() ISUNDEF()
ODD() TYPE()

time

AddDay() AddHour() AddMinute()
AddMonth() AddSecond() AddWeek()
AddYear() Day() FORMATDATE()
GmTime() GmToLocalTime() Hour()
LocalToGmTime() Minute() Month()
Now() Sec() TimeValue()
WeekDay() Year() YearDay()

ScriptBasic
Command and Function Reference

5

Commands

ABS

Returns the absolute value of the argument. If the argument is a string then it
first converts it to integer or real value. The return value is integer or real
value depending on the argument.

ABS(undef) is undef or raises an error if the option RaiseMatherror is set in bit
sbMathErrUndef.

ACOS

Calculates the arcus cosine of the argument, which is the inverse of the
function COS(). If the argument is not between (-1.0,+1.0) the return value is
undef.

If the result is within the range of an integer value on the actual architecture
then the result is returned as an integer, otherwise it is returned as a real
value.

ACOS(undef) is undef or raises an error if the option RaiseMatherror is set in bit
sbMathErrUndef.

ACOSECANT

This is a planned function to calculate the arcus cosecant of the argument.

ACTAN

This is a planned function to calculate the arcus cotangent of the argument.

ScriptBasic
Command and Function Reference

6

ADDDAY

This function takes two arguments. The first argument is a time value, the
second is an integer value. The function increments the day by the second
argument and returns the time value for the same hour and minute but some
days later or sooner in case the second argument is negative.

This function is very simple from the arithmetic's point of view, because it
simply adds 86400 times the second argument to the first argument and
returns the result.

ADDHOUR

This function takes two arguments. The first argument is a time value, the
second is an integer value. The function increments the hours by the second
argument and returns the time value for the same minute and seconds but
some hours later or sooner in case the second argument is negative.

This function is very simple from the arithmetic's point of view, because it
simply adds 3600 times the second argument to the first argument and
returns the result.

ADDMINUTE

This function takes two arguments. The first argument is a time value, the
second is an integer value. The function increments the minutes by the
second argument and returns the time value for the same seconds but some
minutes later or sooner in case the second argument is negative.

This function is very simple from the arithmetic's point of view, because it
simply adds 60 times the second argument to the first argument and returns
the result.

ScriptBasic
Command and Function Reference

7

ADDMONTH

This function takes two arguments. The first argument is a time value, the
second is an integer value. The function increments the month by the second
argument and returns the time value for the same day, hour and minute but
some months later or sooner in case the second argument is negative.

If the resulting value is on a day that does not exist on the result month then
the day part of the result is decreased. For example:

print FormatTime("MONTH DAY, YEAR",AddMonth(TimeValue(2000,03,31),1))

will print

April 30, 2000

ADDRESS(myFunc())

Return the entry point of a function or subroutine. The returned value is to be
used solely in a corresponding ICALL.

The returned value is an integer value that is the internal node number of the
compiled code where the function starts. The different node numbers are in
complex relation with each other and simple rules can not be applied. In other
words playing around with the value returned by the function ADDRESS and then
using it in an ICALL may result interpreter crash raising internal error.

Note that in the argument of the function ADDRESS the function name has to
include the () characters. The function is NOT called by the code when the
function ADDRESS is used. On the other hand forgetting the opening and closing
parentheses will result erroneous value unusable by ICALL.

ScriptBasic
Command and Function Reference

8

ADDSECOND

This function takes two arguments. The first argument is a time value, the
second is an integer value. The function increments the seconds by the
second argument and returns the time value.

This function is the simplest from the arithmetic's point of view, because it
simply adds the second argument to the first argument and returns the result.

ADDWEEK

This function takes two arguments. The first argument is a time value, the
second is an integer value. The function increments the week by the second
argument and returns the time value for the same hour and minute but some
weeks later or sooner in case the second argument is negative.

This function is very simple from the arithmetic's point of view, because it
simply adds 604800 times the second argument to the first argument and
returns the result.

ADDYEAR

This function takes two arguments. The first argument is a time value, the
second is an integer value. The function increments the year of the time value
by the second argument and returns the time value for the same month, day,
hour and minute but some years later or sooner in case the second argument
is negative.

This is a bit more complex than just adding 365*24*60*60 to the value,
because leap-years are longer and in case you add several years to the time
value you should consider adding these longer years extra days. This is
calculated correct in this function.

ScriptBasic
Command and Function Reference

9

If the original time value is February 29 on a leap-year and the resulting value
is in a year, which is not leap year the function will return February 28.

Note that because of this correction using the function in a loop is not the
same as using it once. For example:

print AddYear(TimeValue(2000,02,29),4),"\n"
print AddYear(AddYear(TimeValue(2000,02,29),2),2),"\n"

will print two different values.

ASC(string)

Returns the ASCII code of the first character of the argument string.

ASECANT

This is a planned function to calculate the arcus secant of the argument.

ASIN

Calculates the arcus sine of the argument, which is the inverse of the function
SIN(). If the argument is not between (-1.0,+1.0) the return value is undef.

If the result is within the range of an integer value on the actual architecture
then the result is returned as an integer, otherwise it is returned as a real
value.

ASIN(undef) is undef or raises an error if the option RaiseMatherror is set in bit
sbMathErrUndef.

ATAN

This is a planned function to calculate the arcus tangent of the argument.

ScriptBasic
Command and Function Reference

10

ATN

This is a planned function to calculate the arcus tangent of the argument.

BIN

This is a planned function to convert the argument number to binary format.
(aka. format as a binary number containing only 0 and 1 characters and return
this string)

BINMODE [# fn] | input | output

Set an opened file handling to binary mode.

The argument is either a file number with which the file was opened or one of
keywords input and output. In the latter case the standard input or output is
set.

See also TEXTMODE

CALL subroutine

Use this command to call a subroutine. Subroutines can be called just writing
the name of the already defined subroutine and the arguments. However in
situation when the code calls a function that has not yet been defined the
interpreter knows that the command is a subroutine call from the keyword
CALL.

To be safe you can use the keyword before any subroutine call even if the
subroutine is already defined.

Subroutines and functions can be called the same way. ScriptBasic does not
make real distinction between subroutines and functions. However it is
recommended that functions be used as functions using the return value and

ScriptBasic
Command and Function Reference

11

code segments not returning any value are implemented and called as
subroutine.

CHDIR directory

Change the current working directory (CWD). This command accepts one
argument, the directory which has to be the CWD after the command is
executed. If the CWD can not be changed to that directory then an error is
raised.

Pay careful attention when you use this command in your code. Note that
there is only one CWD for each process and not one for each thread. When
an application embeds the BASIC interpreter in a multi-thread environment,
like in the Eszter SB Application Engine this command may alter the CWD for
all the threads.

For this reason the Eszter SB Application Engine switches off this command,
raising error if ever a program executed in the engine calls this command
whatever argument is given.

Thus usually BASIC programs should avoid calling this command unless the
programmer is certain that the BASIC program will only be executed in a
single thread environment (command line).

CHOMP()

Remove the trailing new line from the space. If the last character of the string
is not new line then the original stringis returned. This function is useful to
remove the trailing new line character when reading a line from a file using the
command LINE INPUT

CHR(code)

Return a one character string containing a character of ASCII code code.

ScriptBasic
Command and Function Reference

12

CINT

This function is the same as INT() and is present in ScriptBasic to be more
compatible with other BASIC language variants.

CLOSE [#] fn

Close a previously successfully opened file. The argument of the command is
the file number that was used in the command OPEN to open the file.

If the file number is not associated with a successfully opened file then error is
raised.

REM open the file to read
open "test.bas" for input as 1
REM close the file
close#1

REM open two files for reading
open "test.bas" for input as 1
open "test.sb" for input as 2

REM close all files
close

You can also use the command without any argument. In this case all
currently opened files and sockets are going to be closed. For those, who
want to express this behaviour this command can be used with the keyword
CLOSEALL. Note however that the keyword CLOSEALL is not a replacement for the
keyword CLOSE. You can not close a single file or socket using the keyword
CLOSEALL.

CLOSE DIRECTORY [#] dn

Close an opened directory and release all memory that was used by the file
list.

See also OPEN DIRECTORY.

ScriptBasic
Command and Function Reference

13

COMMAND()

This function returns the command line arguments of the program in a single
string. This does not include the name of the interpreter and the name of the
BASIC program, only the arguments that are to be passed to the BASIC
program. For example the program started as

scriba test_command.sb arg1 arg2 arg3

will see "arg1 arg2 arg3" string as the return value of the function COMMAND().

details

Concatenate operator &

This operator concatenates two strings. The resulting string will contain the
characters of the string standing on the left side of the operator followed by
the characters of the string standing on the right hand side of the operator.
The ScriptBasic interpreter automatically allocates the resulting string.

CONF("conf.key")

This function can be used to retrieve ScriptBasic configuration parameters.
This is rarely needed by general programmers. This is needed only for scripts
that maintain the ScriptBasic setup, for example install a new module copying
the files to the appropriate location.

The argument "conf.key" should be the configuration key string. If this key is
not on the top level then the levels should be separated using the dot
chatacter, like conf("preproc.internal.dbg") to get the debugger DLL or SO
file.

The return value of the function is the integer, real or string value of the
configuration value. If the key is not defined or if the system manager set the
key to be hidden (see later) then the function will raise an error

ScriptBasic
Command and Function Reference

14

(0): error &H8:The argument passed to a module function is out of the
accepted range.

Some of the configuration values are not meant to be readable for the BASIC
programs for security reasons. A typical example is the database connection
password. The system manager can insert extra "dummy" configuration keys
that will prevent the BASIC program to get the actual value of the
configuration key. The extra configuration key has to have the same name as
the key to be hidden with a $ sign prepended to it.

For example the MySQL connection named test has the connection password
under the key mysql.connections.test.password. If the key in the compiled
configuration file mysql.connections.test.$password exists then the BASIC
function conf() will result error. The value of this extra key is not taken into
account.

The system manager can configure whole configuration branches to be
hidden from the BASIC programs. For example the configuration key
mysql.connections.$test defined with any value will prevent access of BASIC
programs to any argument of the connection named test. Similarly the key
mysql.$connections will prevent access to any configuration value of any
MySQL connections if defined and finally the key $mysql will stop BASIC
programs to discover any MySQL configuration information if defined.

The current implementation does not examine the actual value of the extra
security key. However later implementations may alter the behaviour of this
function based on the value of the key. To remain compatible with later
versions it is recommended that the extra security key is configured to have
the value 1.

COS

Calculates the cosine of the argument.

ScriptBasic
Command and Function Reference

15

If the result is within the range of an integer value on the actual architecture
then the result is returned as an integer, otherwise it is returned as a real
value.

COS(undef) is undef or raises an error if the option RaiseMatherror is set in bit
sbMathErrUndef.

COSECANT

This is a planned function to calculate the cosecant of the argument.

COTAN

This is a planned function to calculate the cotangent of the argument.

COTAN2

This is a planned function to calculate the cotangent of the ratio of the two
arguments.

CRYPT(string,salt)

This function returns the encoded DES digest of the string using the salt as it
is used to encrypt passwords under UNIX.

Note that only the first 8 characters of the string are taken into account.

CURDIR()

This function does not accept argument and returns the current working
directory as a string.

CVD

This is a planned function to convert the argument string into a real number.

ScriptBasic
Command and Function Reference

16

Converts a passed in string "str$" to a double-precision number. The passed
string must be eight (8) bytes or longer. If less than 8 bytes long, an error is
generated. If more than 8 bytes long, only the first 8 bytes are used.

CVI

This is a planned function to convert the argument string into an integer.

Converts a passed in string "str$" to an integer number. The passed string
must be two (2) bytes or longer. If less than 2 bytes long, an error is
generated. If more than 2 bytes long, only the first 2 bytes are used.

CVL

This is a planned function to convert the argument string into an integer.

Converts a passed in string "str$" to a long-integer number. The passed string
must be four (4) bytes or longer. If less than 4 bytes long, an error is
generated. If more than 4 bytes long, only the first 4 bytes are used.

CVS

This is a planned function to convert the argument string into an integer.

Converts a passed in string "str$" to a single precision number. The passed
string must be four (4) bytes or longer. If less than 4 bytes long, an error is
generated. If more than 4 bytes long, only the first 4 bytes are used.

DAY

This function accepts one argument that should express the time in number of
seconds since January 1, 1970 0:00 am and returns the day of the month (1
to 31) value of that time. If the argument is missing the function uses the
actual local time to calculate the day of the month value. In other words it
returns the day value of the actual date.

ScriptBasic
Command and Function Reference

17

DECLARE COMMAND function ALIAS cfun LIB library

This command is used to declare a command implemented in an external
ScriptBasic library. Do NOT use this command to invoke a function from an
external DLL that was not specifically written for ScriptBasic. When you
include module BASIC files that contain DECLARE COMMAND lines, you can call the
functions declared this way as they were entirely written in BASIC. You
use/write a DECLARE COMMAND command if you developed an external module for
ScriptBasic programs in C.

details

DECLARE SUB function ALIAS cfun LIB library

This command is used to declare a function implemented in an external
ScriptBasic library. Do NOT use this command to invoke a function from an
external DLL that was not specifically written for ScriptBasic. When you
include module BASIC files that contain DECLARE SUB lines, you can call the
functions declared this way as they were entirely written in BASIC. You
use/write a DECLARE SUB command if you developed an external module for
ScriptBasic programs in C.

The difference between DECLARE SUB and DECLARE COMMAND is that the arguments
passed to a function declared using DECLARE SUB evaluates its argument and
passes the values to the C program implementing the function, whereas the
functions declared using the command DECLARE COMMAND starts the function and
evaluate the arguments one-by-one when and if the function implemented in
C requests.

This difference is only important when you use expressions in the place of an
argument that itself calls some other functions and has so called side effect.

ScriptBasic
Command and Function Reference

18

Have a look at the following code:

import iff.bas

function side_effect()
 b = 1 + b
 side_effect = b
end function

b = 0
print iff(0,side_effect(),2)
print b

In the example above we use a hipotethical function implemented by a
module and declared in the file iff.bas. This function evaluates the first
argument and if that is true returns the second argument, otherwise it returns
the third argument.

If the function iff was implemented as a command and declared accordingly
using the command DECLARE COMMAND and if that module function evaluates only
one of the second and third arguments then the global variable b remains
unchanged.

If the function iff was implemented as a function and declared accordingly
using the command DECLARE SUB and then the global variable b is increased.

details

DELETE file/directory_name

This command deletes a file or an empty directory. You can not delete a
directory which contains files or subdirectories.

If the file or the directory can not be deleted an error is raised. This may
happen for example if the program trying to delete the file or directory does
not have enough permission.

See DELTREE for a more powerful and dangerous delete.

ScriptBasic
Command and Function Reference

19

DELTREE file/directory_name

Delete a file or a directory. You can use this command to delete a file the
same way as you do use the command DELETE. The difference between the
two commands DLETE and DELTREE comes into place when the program
deletes directories.

This command, DELTREE forcefully tries to delete a directory even if the
directory is not empty. If the directory is not empty then the command tries to
delete the files in the directory and the subdirectories recursively.

If the file or the directory cannot be deleted then the command raises error.
However even in this case some of the files and subdirectories may already
been deleted.

DO

This command is a looping construct that repeats commands so long as long
the condition following the keyword UNTIL becomes true or the condition
following the keyword WHILE becomes false.

The format of the command is

DO
 ...
 commands to repeat
 ...
LOOP WHILE expression

or

DO
 ...
 commands to repeat
 ...
LOOP UNTIL expression

The condition expression is evaluated every time after the loop commands
were executed. This means that the loop body is executed at least once.

ScriptBasic
Command and Function Reference

20

A DO/LOOP construct should be closed with a LOOP UNTIL or with a LOOP WHILE

command but not with both.

The DO/LOOP UNTIL is practically equivalent to the REPEAT/UNTIL construct.

See also WHILE, DOUNTIL, DOWHILE, REPEAT, DO and FOR.

DO UNTIL condition

This command implements a looping construct that loops the code between
the line DO UNTIL and LOOP util the expression following the keywords on the
loop starting line becomes true.

DO UNTIL expression
 ...
 commands to repeat
 ...
LOOP

The expression is evaluated when the looping starts and each time the loop is
restarted. It means that the code between the DO UNTIL and LOOP lines may be
skipped totally if the expression evaluates to some TRUE value during the first
evaluation before the execution starts the loop.

This command is practically equivalent to the construct

WHILE NOT expression
...
 commands to repeat
 ...
WEND

You can and you also should use the construct that creates more readable
code.

See also WHILE, DOUNTIL, DOWHILE, REPEAT, DO and FOR.

ScriptBasic
Command and Function Reference

21

DO WHILE condition

This command implements a looping construct that loops the code between
the line DO WHILE and LOOP util the expression following the keywords on the
loop starting line becomes false.

Practically this command is same as the command WHILE with a different
syntax to be compatible with different BASIC implementations.

do while
 ...
loop

You can use the construct that creates more readable code.

See also WHILE, DOUNTIL, DOWHILE, REPEAT, DO and FOR.

END

End of the program. Stops program execution.

You should usually use this command to signal the end of a program.
Although you can use STOP and END interchangeably this is the convention in
BASIC programs to use the command END to note the end of the program and
STOP to stop the program execution based on some extra condition inside the
code.

ENVIRON("envsymbol") or ENVIRON(n)

This function returns the value of an environment variable. Environment
variables are string values associated to names that are provided by the
executing environment for the programs. The executing environment is
usually the operating system, but it can also be the Web server in CGI
programs that alters the environment variables provided by the surrounding
operating system specifying extra values.

ScriptBasic
Command and Function Reference

22

This function can be used to get the string of an environment variable in case
the program knows the name of the variable or to list all the environment
variables one by one.

If the environment variable name is known then the name as a string has to
be passed to this function as argument. In this case the return value is the
value of the environment variable. For example

 MyPath = ENVIRON("PATH")

If the program wants to list all the environment variables the argument to the
function ENVIRON should be an integer number n. In this case the function
returns a string containing the name and the value of the n-th environment
variable joined by a = sign. The numbering starts with n=0.

If the argument value is integer and is out of the range of the possible
environment variable ordinal numbers (negative or larger or equal to the
number of the available environment variables) then the function returns
undef.

If the argument to the function is undef then the function also returns the undef

value.

Note that ScriptBasic provides an easy way for the embedding applications to
redefine the underlying function that returns the environment variable. Thus
an embedding application can "fool" a BASIC program providing its own
environment variable. For example the Eszter SB Application Engine provides
an alternative environment variable reading function and thus BASIC
applications can read the environment using the function ENVIRON as if the
program was running in a real CGI environment.

details

ScriptBasic
Command and Function Reference

23

EOD(dn)

Checks if there is still some file names in the directory opened for reading
using the directory number dn.

See also NEXTFILE().

EOF(n)

This function accepts one parameter, an opened file number. The return value
is true if and only if the reading has reached the end of the file.

ERROR() or ERROR n

The keyword ERROR can be used as a command as well as a built-in function.
When used as a function it returns the error code that last happened. The
error codes are defined in the header file error.bas that can be included with
the command import. The error code is a vital value when an error happens
and is captured by some code defined after the label referenced by the
command ON ERROR GOTO. This helps the programmer to ensure that the error
was really the one that the error handling code can handle and not something
else.

If the keyword is used as a command then it has to be followed by some
numeric value. The command does not ever return but generates an error of
the code given by the argument.

Take care when composing the expression following the keyword ERROR. It
may happen that the expression itself can not be evaluated due to some error
conditions during the evaluation of the expression. The best practice is to use
a constant expression using the symbolic constants defined in the include file
error.bas.

Note that the codes defined in the include file are version dependant.

ScriptBasic
Command and Function Reference

24

If an error is not captured by any ON ERROR GOTO specified error handler then
the interpreter stops. The command line variation passes the error code to the
executing environment as exit code. In other word you can exit from a BASIC
program

ERROR$() or ERROR$(n)

Returns the English sentence describing the last error if the argument is not
defined or returns the English sentence describing the error for the error code
n.

If the error code n provided as argument is negative or is above all possible
errors then the result of the function is undef.

EVEN

Return true if the argument is an even number. EVEN(undef) is undef or raises
an error if the option RaiseMatherror is set in bit sbMathErrUndef.

See also ODD().

EXECUTE("executable_program", time_out,pid_v)

This function should be used to start an external program and wait for it to
finish.

The first argument of the function is the executable command line to start. The
second argument is the number of seconds that the BASIC program should
wait for the external program to finish. If the external program finishes during
this period the function returns and the return value is the exit code of the
external program. If the argument specifying how many seconds the BASIC
program has to wait is -1 then the BASIC program will wait infinitely.

ScriptBasic
Command and Function Reference

25

If the program does not finish during the specified period then the function
alters the third argument, which has to be a variable and raises error. In this
case the argument pid_v will hold the PID of the external program. This value
can be used in the error handling code to terminate the external program.

details details details

EXIT FUNCTION

This function stops the execution of a function and the execution gets back to
the point from where the function was called. Executing this command has the
same effect as if the execution has reached the end of a function.

EXIT SUB

This function stops the execution of a subroutine and the execution gets back
to the point from where the subroutine was called. Executing this command
has the same effect as if the execution has reached the end of a subroutine.

Same as EXIT FUNCTION

EXP

Calculates the x-th exponent of e. If the result is within the range of an integer
value on the actual architecture then the result is returned as an integer,
otherwise it is returned as a real value.

EXP(undef) is undef or raises an error if the option RaiseMatherror is set in bit
sbMathErrUndef.

FALSE

This built-in constant is implemented as an argument less function. Returns
the value false.

ScriptBasic
Command and Function Reference

26

FILEACCESSTIME(file_name)

Get the time the file was accessed last time.

This file time is measured in number of seconds since January 1, 1970 00:00.
Note that the different file systems store the file time with different precision.
Also FAT stores the file time in local time while NTFS for example stores the
file time as GMT. This function returns the value rounded to whole seconds as
returned by the operating system. Some of the file systems may not store all
three file time types:

 the time when the file was created,
 last time the file was modified and
 last time the file was accessed

Trying to get a time not defined by the file system will result undef.

FILECOPY filename,filename

Copy a file. The first file is the existing one, the second is the name of the new
file. If the destination file already exists then the command overwrites the file.
If the destination file is to be created in a directory that does not exist yet then
the directory is created automatically.

In the current version of the command you can not use wild characters to
specify more than one file to copy, and you can not concatenate files using
this command. You also have to specify the full file name as destination file
and this is an error to specify only a directory where to copy the file.

Later versions of this command may implement these features.

If the program can not open the source file to read or the destination file can
not be created then the command raises error.

ScriptBasic
Command and Function Reference

27

FILECREATETIME(file_name)

Get the time the file was modified last time. See also the comments on the
function FTACCESS. Get the time the file was modified last time. See also the
comments on the function FTACCESS. Get the time the file was modified last
time. See also the comments on the function FTACCESS.

FILEEXISTS(file_name)

Returns true if the named file exists. Returns true if the named file exists.
Returns true if the named file exists.

FILELEN(file_name)

Get the length of a named file. If the length of the file can not be determined
(for example the file does not exists, or the process running the code does not
have permission to read the file) then the return value is undef.

This function can be used instead of LOC() when the file is not opened by the
BASIC program.

FILEMODIFYTIME(file_name)

Get the time the file was modified last time. See also the comments on the
function FTACCESS.

FIX

This function returns the integral part of the argument. The return value of the
function is integer with the exception that FIX(undef) may return undef.

FIX(undef) is undef or raises an error if the option RaiseMatherror is set in bit
sbMathErrUndef.

ScriptBasic
Command and Function Reference

28

The difference between INT and FIX is that INT truncates down while FIX

truncates towards zero. The two functions are identical for positive numbers.
In case of negative arguments INT will give a smaller number if the argument
is not integer. For example:

 int(-3.3) = -4
 fix(-3.3) = -3

See INT().

LOCK # fn, mode

Lock a file or release a lock on a file. The mode parameter can be read, write or
release.

When a file is locked to read no other program is allowed to write the file. This
ensures that the program reading the file gets consistent data from the file. If
a program locks a file to read using the lock value read other programs may
also get the read lock, but no program can get the write lock. This means that
any program trying to write the file and issuing the command LOCK with the
parameter write will stop and wait until all read locks are released.

When a program write locks a file no other program can read the file or write
the file.

Note that the different operating systems and therefore ScriptBasic running on
different operating systems implement file lock in different ways. UNIX
operating systems implement so called advisory locking, while Windows NT
implements mandatory lock.

This means that a program under UNIX can write a file while another program
has a read or write lock on the file if the other program is not good behaving
and does not ask for a write lock. Therefore this command under UNIX does
not guarantee that any other program is not accessing the file simultaneously.

ScriptBasic
Command and Function Reference

29

Contrary Windows NT does lock the file in a hard way, and this means that no
other process can access the file in prohibited way while the file is locked.

This different behavior usually does not make harm, but in some rare cases
knowing it may help in debugging some problems. Generally you should not
have a headache because of this.

You should use this command to synchronize the BASIC programs running
parallel and accessing the same file.

You can also use the command LOCK REGION to lock a part of the file while
leaving other parts of the file accessible to other programs.

If you heavily use record oriented files and file locks you may consider using
some data base module to store the data in database instead of plain files.

FOR var=exp_start TO exp_stop [STEP exp_step]

Implements a FOR loop. The variable var gets the value of the start
expression exp_start, and after each execution of the loop body it is
incremented or decrement by the value exp_step until it reaches the stop value
exp_stop.

FOR var= exp_start TO exp_stop [STEP exp_step]
 ...
 commands to repeat
 ...
NEXT var

The STEP part of the command is optional. If this part is missing then the
default value to increment the variable is 1.

If

ScriptBasic
Command and Function Reference

30

 the expression exp_start is larger than the expression exp_stop and
exp_step is positive or if

 the expression exp_start is smaller than the expression exp_stop and
exp_step is negative

then the loop body is not executed even once and the variable retains its old
value.

When the loop is executed at least once the variable gets the values one after
the other and after the loop exists the loop variable holds the last value for
which the loop already did not execute. Thus

for h= 1 to 3
next
print h
stop

prints 4.

The expression exp_start is evaluated only once when the loop starts. The
other two expressions exp_stop and exp_step are evaluated before each loop.
Thus

j = 1
k = 10
for h= 1 to k step j
print h,"\n"
j += 1
k -= 1
next
print k," ",j,"\n"
stop

will print

1
3
6
7 4

To get into more details the following example loop

STEP_v = 5
for z= 1 to 10 step STEP_v

ScriptBasic
Command and Function Reference

31

 print z,"\n"
 STEP_v -= 10
next z

executes only once. This is because the step value changes its sign during
the evaluation and the new value being negative commands the loop to
terminate as the loop variable altered value is smaller then the end value. In
other words the comparison also depends on the actual value of the step
expression.

These are not only the expressions that are evaluated before each loop, but
the variable as well. If the loop variable is a simple variable then this has not
too much effect. However if the loop variable is an array member then this
really has to be taken into account. For example:

for j=1 to 9
 A[j] = 0
next

j = 1
for A[j]= 1 to 9

 for k=1 to 9
 print A[k]
 next k
 print

 j += 1
 if j > 9 then STOP

next

prints

100000000
110000000
111000000
111100000
111110000
111111000
111111100
111111110
111111111

ScriptBasic
Command and Function Reference

32

so you can see that the loop takes, evaluates, compares and increments the
actual array element as the variable j in the sample code above is
incremented.

The loop variable or some other left value has to stand between the keyword
FOR and the sign = on the start line of the loop but this is optional following the
keyword NEXT. ScriptBasic optionally allow you to write the variable name after
the keyword NEXT but the interpreter does not check if the symbol is a variable
of the loop. The role of this symbol is merely documentation of the BASIC
code. However, you can not write an array element following the keyword
NEXT, only a simple variable name.

If the expression exp_step is zero then the loop variable is not altered and the
loop is re-executed with the same loop variable value. This way you can
easily get into infinite loop.

These are fine tuning details of the command FOR that you may need to be
aware when you read some tricky code. On the other hand you should never
create any code that depends on these features. The loop variable is
recommended to be a simple variable and the expressions in the loop head
should evaluate the same for each execution of the loop. If you need
something more special that may depend on some of the features discussed
above then you have to consider using some other looping construct to get
more readable code.

FORK()

NOT IMPLEMENTED

This function is supposed to perform process forking just as the native UNIX
function fork does. However this function is not implemented in ScriptBasic
(yet). Until this function is implemented in ScriptBasic you can use the UX
module fork function.

ScriptBasic
Command and Function Reference

33

This function is supposed to perform process forking just as the native UNIX
function fork does. However this function is not implemented in ScriptBasic
(yet). Until this function is implemented in ScriptBasic you can use the UX
module fork function.

This function is supposed to perform process forking just as the native UNIX
function fork does. However this function is not implemented in ScriptBasic
(yet). Until this function is implemented in ScriptBasic you can use the UX
module fork function.

FORMAT()

The function format accepts variable number of arguments. The first argument
is a format string and the rest of the arguments are used to create the result
string according to the format string. This way the function format is like the C
function sprintf.

The format string can contain normal characters and control substrings.

The control substring have the form %[flags][width][.precision]type. It follows
the general sprintf format except that type prefixes are not required or
allowed and type can only be "dioxXueEfgGsc". The * for width and precision
is supported.

An alternate format BASIC-like for numbers has the form %~format~ where
format can be:

Digit or space

0 Digit or zero

^ Stores a number in exponential format. Unlike QB's USING format this is a
place-holder like the #.

. The position of the decimal point.

ScriptBasic
Command and Function Reference

34

, Separator.

- Stores minus if the number is negative.

+ Stores the sign of the number.

Acknowledgement: the function format was implemented by Paulo Soares

FORMATDATE

FormatDate("format",time)

Formats a time value (or date) according to the format string. The format
string may contain placeholders. The first argument is the format string the
second argument is the time value to convert. If the second argument is
missing or it is undef then the local time is converted.

If the time value is presented it has to be the number of seconds elapsed
since January 1, 1970. This is the usual time stamp value generally used
under UNIX.

If the second argument is a negativevalue then this is treated relative to the
current time point. For example

print FormatDate("YEAR MON DD HH:mm:ss", -60)

will print out the time that was one minute ago.

details

FILEOWNER(FileName)

This function returns the name of the owner of a file as a string. If the file does
not exist or for some other reason the owner of the file can not be determined
then the function returns undef.

ScriptBasic
Command and Function Reference

35

FRAC

The function returns the fractional part of the argument. This function always
returns a double except that FRAC(undef) may return undef. FRAC(undef) is undef

or raises an error if the option RaiseMatherror is set in bit sbMathErrUndef.

Negative arguments return negative value (or zero if the argument is a
negative integer), positive arguments result positive values (or zero if the
argument is integer).

FREEFILE()

This function returns a free file number, which is currently not associated with
any opened file. If there is no such file number it returns undef.

The returned value can be used in a consecutive OPEN statement to specify
a file number. Another way to get a free file number is to set a variable to hold
the integer value zero and use the variable as file number in the statement
OPEN. For more information on this method see the documentation of the
statement OPEN

FUNCTION fun()

This command should be used to define a function. A function is a piece of
code that can be called by the BASIC program from the main part or from a
function or subroutine.

FUNCTION fun(a,b,c)
...
fun = returnvalue
...
END FUNCTION

The end of the function is defined by the line containing the keywords END

FUNCTION.

details

ScriptBasic
Command and Function Reference

36

GCD

This is a planned function that takes two or more integer argument and
calculates the largest common divisor of them.

GMTIME

This function returns the GMT time expressed as seconds since January 1,
1970, 00:00am. The function does not accept any argument. This function is
similar to the function Now() but returns the GMT time instead of the actual
local time.

GMTOLOCALTIME

This function accepts one argument that has to be the number of seconds
elapsed since January 1, 1970 0:00 am in GMT. The function returns the
same number of seconds in local time. In other words the function converts a
GMT time value to local time value.

GOSUB label

=H Gosub commands

This is the good old way implementation of the BASIC GOSUB command. The
command GOSUB works similar to the command GOTO with the exception that the
next return command will drive the interpreter to the line following the line with
the GOSUB.

You can only call a code segment that is inside the actual code environment.
In other words if the GOSUB is in a function or subroutine then the label
referenced by the GOSUB should also be in the same function or subroutine.
Similarly any GOSUB in the main code should reference a label, which is also in
the main code.

ScriptBasic
Command and Function Reference

37

To return from the code fragment called by the command GOSUB the command
RETURN should be used. Note that this will not break the execution of a function
or a subroutine. The execution will continue on the command line following
the GOSUB line.

GOSUB commands can follow each other, ScriptBasic will build up a stack of
GOSUB calls and will return to the appropriate command line following the
matching GOSUB command.

When a subroutine or function contains GOSUB commands and the function or
subroutine is finished so that one or more executed GOSUB command remains
without executed RETURN then the GOSUB/RATURN stack is cleared. This is not an
error.

See also RETURN.

GOTO label

Go to a label and continue program execution at that label. Labels are local
within functions and subroutines. You can not jump into a subroutine or jump
out of it.

Use of GOTO is usually discouraged and is against structural programming.
Whenever you feel the need to use the GOTO statement (except ON ERROR GOTO)
thin it twice whether there is a better solution without utilizing the statement
GOTO.

Typical use of the GOTO statement to jump out of some error condition to the
error handling code or jumping out of some loop on some condition.

HCOS

This is a planned function to calculate the cosinus hyperbolicus of the
argument.

ScriptBasic
Command and Function Reference

38

HCOSECANT

This is a planned function to calculate the cosecant hyperbolicus of the
argument.

HCTAN

This is a planned function to calculate the cotangent hyperbolicus of the
argument.

HEX(n)

Take the argument as a long value and convert it to a string that represents
the value in hexadecimal form. The hexadecimal form will contain upper case
alpha character if there is any alpha character in the hexadecimal
representation of the number.

HOSTNAME()

This function accepts no argument and returns the host name of the machine
executing the BASIC program.

This host name is the TCP/IP network host name of the machine.

HOUR

This function accepts one argument that should express the time in number of
seconds since January 1, 1970 0:00 am and returns the hour value of that
time. If the argument is missing the function uses the actual local time.

HSECANT

This is a planned function to calculate the secant hyperbolicus of the
argument.

ScriptBasic
Command and Function Reference

39

HSIN

This is a planned function to calculate the sinus hyperbolicus of the argument.

HTAN

This is a planned function to calculate the tangent hyperbolicus of the
argument.

ICALL n,v1,v2, ... ,vn

ICALL is implicit call. The first argument of an ICALL command or ICALL
function should be the integer value returned by the function ADDRESS as
the address of a user defined function.

The rest of the arguments are the arguments to be passed to the function to
be called. The return value if the function ICALL is the value of the implicitly
called function.

details

IF condition THEN

Conditional execution. There are two different ways to use this command:
single line IF and multi line IF.

A single line IF has the form

IF condition THEN command

There is no way to specify any ELSE part for the command in the single line
version. If you need ELSE command you have use multi line IF.

The multi line IF should not contain any command directly after the keyword
THEN. It should have the format:

IF condition THEN

ScriptBasic
Command and Function Reference

40

 commands
ELSE
 commands
END IF

The ELSE part of the command is optional, thus the command can have the
format

IF condition THEN
 commands
END IF

as well. To be very precise the full syntax of the multi-line IF command is:

IF condition THEN
 commands
[ELSE IF | ELSEIF | ELSIF | ELIF
 commands
 ...]
[ELSE
 commands]
END IF | ENDIF

You can use as many ELSE IF branches as you like and at most one ELSE

branch.

The keywords ELSE IF, ELSEIF and others are allowed for ease program porting
from other BASIC dialect. There is no difference between the interpretation.
The same is true for END IF in two words and written into a single keyword
ENDIF.

IMAX

This is a planned function to select and return the index of the maximum of
the arguments.

IMIN

This is a planned function to select and return the index of the minimum of the
arguments.

ScriptBasic
Command and Function Reference

41

INPUT(n,fn)

This function reads records from an opened file.

Arguments:

 n the first argument is the number of records to read. The size of the
record in terms of bytes is defined as the LEN parameter when the file
was opened. If this was missing the function reads n bytes from the file
or socket.

 fn the second parameter is the file number associated to the opened
file by the command OPEN. If this parameter is missing the function
reads from the standard input.

The function tries but not necessarily reads n records from the file. To get the
actual number of bytes (and not records!) read from the file you can use the
function LEN on the result string.

Note that some Basic languages allow the form

a = INPUT(20,#1)

however this extra # is not allowed in ScriptBasic. The character # is an
operator in ScriptBasic defined as no-operation and therefore you can use this
form. On the other hand operators like # are reserved for the external modules
and some external module may redefine this operator. Programs using such
modules may end up in trouble when using the format above therefore it is
recommended not to use the above format.

INSTR(base_string,search_string [,position])

This function can be used to search a sub-string in a string. The first argument
is the string we are searching in. The second argument is the string that we
actually want to find in the first argument. The third optional argument is the
position where the search is to be started. If this argu-ment is missing the

ScriptBasic
Command and Function Reference

42

search starts with the first character position of the string. The function returns
the position where the sub-string can be found in the first string. If the
searched sub-string is not found in the string then the return value is undef.

See INSTRREV()

INSTRREV(base_string,search_string [,position])

This function can be used to search a sub-string in a string in reverse order
starting from the end of the string. The first argument is the string we are
searching in. The second argument is the string that we actually want to find
in the first argument. The third optional argument is the position where the
search is to be started. If this argument is missing the search starts with the
last character position of the string. The function returns the position where
the sub-string can be found in the first string. If the searched sub-string is not
found in the string then the return value is undef.

See INSTR()

INT

This function returns the integral part of the argument. INT(undef) is undef or
raises an error if the option RaiseMatherror is set in bit sbMathErrUndef. Other
than this the function returns integer value.

The difference between INT and FIX is that INT truncates down while FIX

truncates towards zero. The two functions are identical for positive numbers.
In case of negative arguments INT will give a smaller number if the argument
is not integer. For example:

 int(-3.3) = -4
 fix(-3.3) = -3

See FIX().

ScriptBasic
Command and Function Reference

43

ISARRAY

This function can be used to determine whether a variable holds array value
or ordinary value. If the variable passed as argument to the function is an
array then the function returns true, otherwise the function returns false.

See also ISSTRING(), ISINTEGER(), ISREAL(), ISNUMERIC(), IsDefined(),
ISUNDEF(), ISEMPTY(), TYPE().

ISDEFINED

This function can be used to determine whether an expression is defined or
undefined (aka undef). If the argument is a defined value then the function
returns true, otherwise the function returns false.

This function is the counter function of ISUNDEF().

See also ISARRAY(), ISSTRING(), ISINTEGER(), ISREAL(), ISNUMERIC(),
ISUNDEF(), ISEMPTY(), TYPE().

ISDIRECTORY(file_name)

Returns true if the named file is a directory and false if the file is NOT a
directory. Returns true if the named file is a directory and false if the file is
NOT a directory. Returns true if the named file is a directory and false if the
file is NOT a directory.

ISEMPTY

This function can be used to determine whether an expression holds an
empty string. Because programmers tend to use the value undef where empty
string would be more precise the function returns true if the argument is undef.
Precisely:

ScriptBasic
Command and Function Reference

44

The function returns true if the argument is undef or a string containing zero
characters. Otherwise the function returns false.

See also ISARRAY(), ISSTRING(), ISINTEGER(), ISREAL(), ISNUMERIC(),
IsDefined(), ISUNDEF(), TYPE().

ISINTEGER

This function can be used to determine whether an expression is integer or
some other type of value. If the argument is an integer then the function
returns true, otherwise the function returns false.

See also ISARRAY(), ISSTRING(), ISREAL(), ISNUMERIC(), IsDefined(),
ISUNDEF(), ISEMPTY(), TYPE().

ISNUMERIC

This function can be used to determine whether an expression is numeric
(real or integer) or some other type of value. If the argument is a real or an
integer then the function returns true, otherwise the function returns false.

See also ISARRAY(), ISSTRING(), ISINTEGER(), ISREAL(), IsDefined(),
ISUNDEF(), ISEMPTY(), TYPE().

ISREAL

This function can be used to determine whether an expression is real or some
other type of value. If the argument is a real then the function returns true,
otherwise the function returns false.

See also ISARRAY(), ISSTRING(), ISINTEGER(), ISNUMERIC(), IsDefined(),
ISUNDEF(), ISEMPTY(), TYPE().

ScriptBasic
Command and Function Reference

45

ISFILE(file_name)

Returns true if the named file is a regular file and false if it is a directory.
Returns true if the named file is a regular file and false if it is a directory.
Returns true if the named file is a regular file and false if it is a directory.

ISSTRING

This function can be used to determine whether an expression is string or
some other type of value. If the argument is a string then the function returns
true, otherwise the function returns false.

See also ISARRAY(), ISINTEGER(), ISREAL(), ISNUMERIC(), IsDefined(),
ISUNDEF(), ISEMPTY(), TYPE().

ISUNDEF

This function can be used to determine whether an expression is defined or
undefined (aka undef). If the argument is a defined value then the function
returns false, otherwise the function returns true.

This function is the counter function of IsDefined().

See also ISARRAY(), ISSTRING(), ISINTEGER(), ISREAL(), ISNUMERIC(),
IsDefined(), ISEMPTY(), TYPE().

JOIN(joiner,str1,str2,...)

Join the argument strings using the first argument as a joiner string. details

JOKER(n)

Return the actual match for the n-th joker character from the last executed
LIKE operator. details

ScriptBasic
Command and Function Reference

46

KILL(pid)

This function kills (terminates) a process given by the pid and returns true if
the process was successfully killed. Otherwise it returns false.

Programs usually want to kill other processes that were started by themselves
(by the program I mean) and do not stop. For example you can start an
external program using the BASIC command EXECUTE() to run up to a certain
time. If the program does not finish its work and does not stop during this time
then that program that started it can assume that the external program failed
and got into an infinite loop. To stop this external program the BASIC program
should use the function KILL.

The BASIC program however can try to kill just any process that runs on the
system not only those that were started by the program. It can be successful if
the program has the certain permissions to kill the given process.

You can use this function along with the functions SYSTEM() and EXECUTE. You
can list the processes currently running on an NT box using some of the
functions of the module NT.

LBOUND

This function can be used to determine the lowest occupied index of an array.
Note that arrays are increased in addressable indices automatically, thus it is
not an error to use a lower index that the value returned by the function
LBOUND. On the other hand all the element having index lower than the returned
value are undef.

The argument of this function has to be an array. If the argument is an
ordinary value, or a variable that is not an array the value returned by the
function will be undef.

ScriptBasic
Command and Function Reference

47

LBOUND(undef) is undef or raises an error if the option RaiseMatherror is set in bit
sbMathErrUndef.

See also UBOUND().

LCASE()

Lowercase a string.

LCM

This is a planned function that takes two or more integer argument and
calculates the least common multiple of them.

LEFT(string,len)

Creates the left of a string. The first argument is the string. The second
argument is the number of characters that should be put into the result. If this
value is larger than the number of characters in the string then all the string is
returned.

See also MID(), RIGHT()

details

LEN()

This function interprets its argument as a string and returns the length of the
string. In ScriptBasic strings can hold any value thus the length of the string is
the number of characters contained in the string containing any binary
characters, even binary zero.

If the argument is not a string it is converted to string automatically and the
length of the converted string is returned. The only exception is undef for
which the result is also undef.

ScriptBasic
Command and Function Reference

48

v = expression

Assign a value to a variable.

On the left side of the = a variable or some other ScriptBasic left value has to
stand. On the right side an expression should be used. First the left value is
evaluated and then the expression. Finally the left value's old value is
replaced by the result of the expression.

The left value standing on the left side of the = can be a local or global
variable, array element or associative array element.

v &= expression

Append a string to a variable.

The variable can be a global or local variable, array element or associative
array element.

You can use this command as a shorthand for v = v & expression. Using this
short format is more readable in some cases and generates more efficient
code. However note that this kind of assignment operation is a C language
like operator and is not common in BASIC programs.

v /= expression

Divide a variable by an expression.

The variable can be a global or local variable, array element or associative
array element.

You can use this command as a shorthand for v = v / expression. Using this
short format is more readable in some cases and generates more efficient
code. However note that this kind of assignment operation is a C language
like operator and is not common in BASIC programs.

ScriptBasic
Command and Function Reference

49

v \= expression

Integer divide a variable by a value.

The variable can be a global or local variable, array element or associative
array element.

You can use this command as a shorthand for v = v \ expression. Using this
short format is more readable in some cases and generates more efficient
code. However note that this kind of assignment operation is a C language
like operator and is not common in BASIC programs.

v -= expression

This command subtracts a value from a variable.

The variable can be a global or local variable, array element or associative
array element.

You can use this command as a shorthand for v = v - expression. Using this
short format is more readable in some cases and generates more efficient
code. However note that this kind of assignment operation is a C language
like operator and is not common in BASIC programs.

v += expression

Add a value to a variable.

The variable can be a global or local variable, array element or associative
array element.

You can use this command as a shorthand for v = v + expression. Using this
short format is more readable in some cases and generates more efficient
code. However note that this kind of assignment operation is a C language
like operator and is not common in BASIC programs.

ScriptBasic
Command and Function Reference

50

v *= expression

Multiply a variable with a value.

The variable can be a global or local variable, array element or associative
array element.

You can use this command as a shorthand for v = v * expression. Using this
short format is more readable in some cases and generates more efficient
code. However note that this kind of assignment operation is a C language
like operator and is not common in BASIC programs.

string LIKE pattern

Compare a string against a pattern.
 string LIKE pattern

The pattern may contain joker characters and wild card characters. details

LINE INPUT

Read a line from a file or from the standard input.

The syntax of the command is

LINE INPUT [# i ,] variable

The parameter i is the file number used in the open statement. If this is not
specified the standard input is read.

The variable will hold a single line from the file read containing the possible
new line character terminating the line. If the last line of a file is not terminated
by a new line character then the variable will not contain any new line
character. Thus this command does return only the characters that are really
in the file and does not append extra new line character at the end of the last
line if that lacks it.

ScriptBasic
Command and Function Reference

51

On the other hand you should not rely on the missing new line character from
the end of the last line because it may and usually it happens to be there. Use
rather the function EOF to determine if a file reading has reached the end of
the file or not.

See also CHOMP()

You can also read from sockets using this command but you should be
careful because data in a socket comes from programs generated on the fly.
This means that the socket pipe may not contain the line terminating new line
and not finished as well unlike a file. Therefore the command may start
infinitely long when trying to read from a socket until the application on the
other end of the line sends a new line character or closes the socket. When
you read from a file this may not happen.

LOC()

Return current file pointer position of the opened file. The argument of the
function is the file number that was used by the statement OPEN opening the
file.

This function is the counter part of the statement SEEK that sets the file
pointer position.

The file position is counted in record size. This means that the file pointer
stands after the record returned by the function. This is not necessarily stands
right after the record at the start of the next record actually. It may happen that
the file pointer stands somewhere in the middle of the next record. Therefore
the command

SEEK fn,LOC(fn)

may alter the actual file position and can be used to set the file pointer to a
safe record boundary position.

ScriptBasic
Command and Function Reference

52

If there was no record size defined when the file was opened the location is
counted in bytes. In this case the returned value precisely defines where the
file pointer is.

LOCATLTOGMTIME

This function accepts one argument that has to be the number of seconds
elapsed since January 1, 1970 0:00 am in local time. The function returns the
same number of seconds in GMT. In other words the function converts a local
time value to GMT time value.

LOCK # fn, mode

Lock a file or release a lock on a file. The mode parameter can be read, write or
release.

When a file is locked to read no other program is allowed to write the file. This
ensures that the program reading the file gets consistent data from the file. If
a program locks a file to read using the lock value read other programs may
also get the read lock, but no program can get the write lock. This means that
any program trying to write the file and issuing the command LOCK with the
parameter write will stop and wait until all read locks are released.

When a program write locks a file no other program can read the file or write
the file.

Note that the different operating systems and therefore ScriptBasic running on
different operating systems implement file lock in different ways. UNIX
operating systems implement so called advisory locking, while Windows NT
implements mandatory lock.

This means that a program under UNIX can write a file while another program
has a read or write lock on the file if the other program is not good behaving

ScriptBasic
Command and Function Reference

53

and does not ask for a write lock. Therefore this command under UNIX does
not guarantee that any other program is not accessing the file simultaneously.

Contrary Windows NT does lock the file in a hard way, and this means that no
other process can access the file in prohibited way while the file is locked.

This different behavior usually does not make harm, but in some rare cases
knowing it may help in debugging some problems. Generally you should not
have a headache because of this.

You should use this command to synchronize the BASIC programs running
parallel and accessing the same file.

You can also use the command LOCK REGION to lock a part of the file while
leaving other parts of the file accessible to other programs.

If you heavily use record oriented files and file locks you may consider using
some data base module to store the data in database instead of plain files.

LOCK REGION # fn FROM start TO end FOR mode

Lock a region of a file. The region starts with the record start and ends with
the record end including both end positions. The length of a record in the file is
given when the file is opened using the statement OPEN.

The mode can be read, write and release. The command works similar as
whole file locking, thus it is recommended that you read the differences of the
operating systems handling locking in the section of file locking for the
command LOCK.

LOF()

This function returns the length of an opened file in number of records. The
argument of the function has to be the file number that was used by the
statement OPEN to open the file.

ScriptBasic
Command and Function Reference

54

The actual number of records is calculated using the record size specified
when the command OPEN was used. The returned number is the number of
records that fit in the file. If the file is longer containing a fractional record at
the end the fractional record is not counted.

If there was no record length specified when the file was opened the length of
the file is returned in number of bytes. In this case fractional record has no
meaning.

LOG

Calculates the natural log of the argument. If the argument is zero or less than
zero the result is undef.

If the result is within the range of an integer value on the actual architecture
then the result is returned as an integer, otherwise it is returned as a real
value.

LOG(undef) is undef or raises an error if the option RaiseMatherror is set in bit
sbMathErrUndef.

LOG10

Calculates the log of the argument. If the argument is zero or less than zero
the result is undef

If the result is within the range of an integer value on the actual architecture
then the result is returned as an integer, otherwise it is returned as a real
value.

LOG10(undef) is undef or raises an error if the option RaiseMatherror is set in bit
sbMathErrUndef.

ScriptBasic
Command and Function Reference

55

LTRIM()

Remove the space from the left of the string.

MAX

This is a planned function to select and return the maximum of the arguments.

MAXINT

This built-in constant is implemented as an argument less function. Returns
the maximal number that can be stored as an integer value.

MID(string,start [,len])

Return a subpart of the string. The first argument is the string, the second
argument is the start position. The third argument is the length of the sub-part
in terms of characters. If this argument is missing then the subpart lasts to the
last character of the argument string.

See also LEFT(), RIGHT().

details

MIN

This is a planned function to select and return the minimum of the arguments.

MININT

This built-in constant is implemented as an argument less function. Returns
the minimal ("maximal negative") number that can be stored as an integer
value.

ScriptBasic
Command and Function Reference

56

MINUTE

This function accepts one argument that should express the time in number of
seconds since January 1, 1970 0:00 am and returns the minute value of that
time. If the argument is missing it uses the actual local time.

MKD

This is a planned function to convert the argument real number to an 8 byte
string.

Converts the double-precision number "n" into an 8-byte string so it can later
be retrieved from a random-access file as a numeric value.

MKDIR directory_name

This command creates a new directory. If it is needed then the command
attempts to create all directories automatically that are needed to create the
final directory. For example if you want to create public_html/cgi-bin but the
directory public_html does not exist then the command

MKDIR "public_html/cgi-bin"

will first create the directory public_html and then cgi-bin under that directory.

If the directory can not be created for some reason an error is raised.

This is not an error if the directory does already exist.

You need not call this function when you want to create a file using the
command OPEN. The command OPEN automatically creates the needed
directory when a file is opened to be written.

The created directory can be erased calling the command DELETE or calling
the dangerous command DELTREE.

ScriptBasic
Command and Function Reference

57

MKI

This is a planned function to convert the argument integer number to an 2
byte string.

Converts the integer number "n" into an 2-byte string so it can later be
retrieved from a random-access file as a numeric value.

MKL

This is a planned function.

Converts the long-integer number "n" into an 4-byte string so it can later be
retrieved from a random-access file as a numeric value.

MKS

This is a planned function.

Converts the single-precision number "n" into an 4-byte string so it can later
be retrieved from a random-access file as a numeric value.

MONTH

This function accepts one argument that should express the time in number of
seconds since January 1, 1970 0:00 am and returns the month (1 to 12) value
of that time. If the argument is missing it uses the actual local time. In other
words it returns the actual month in this latter case. The months are
numbered so that January is 1 and December is 12.

NAME filename,filename

Rename a file. The first file is the existing one, the second is the new name of
the file. You can not move filed from one disk to another using this command.

ScriptBasic
Command and Function Reference

58

This command merely renames a single file. Also you can not use wild
characters in the source or destination file name.

If you can not rename a file for some reason, you can try to use the command
FileCopy and then delete the old file. This is successful in some of the cases
when NAME fails, but it is a slower method.

If the file can not be renamed then the command raises error.

NEXTFILE(dn)

Retrieve the next file name from an opened directory list. If there is no more
file names it returns undef.

See also OPEN DIRECTORY and CLOSE DIRECTORY.

NOW

This function returns the local time expressed as seconds since January 1,
1970, 00:00am. The function does not accept any argument. This function is
similar to the function GmTime() but returns the local time instead of the
actual GMT.

OCT(n)

Take the argument as a long value and convert it to a string that represents
the value in octal form.

ODD

Return true if the argument is an odd number. ODD(undef) is undef or raises an
error if the option RaiseMatherror is set in bit sbMathErrUndef.

See also EVEN()

ScriptBasic
Command and Function Reference

59

ON ERROR GOTO [label | NULL]

Set the entry point of the error handling routine. If the argument is NULL then
the error handling is switched off.

ON ERROR RESUME [label | next]

Setting ON ERROR RESUME will try to continue execution on the label or on the
next statement when an error occurs without any error handling code.

See also ON ERROR GOTO, RESUME and ERROR.

OPEN file_name FOR mode AS [#] i [LEN=record_length]

Open or create and open a file. The syntax of the line is
OPEN file_name FOR mode AS [#] i [LEN=record_length]

The parameters:

 file_name if the name of the file to be opened. If the mode allows the file
to be written the file is created if it did not existed before. If needed,
directory is created for the file.

 mode is the mode the file is opened. It can be:
o input open the file for reading. In this mode the file is opened in

read only mode and can not be altered using the file number
associated with the open file. Using any function or command
that tries to write the file will result in error. In this mode the file
has to exist already to open successfully. If the file to be opened
for input does not exist the command OPEN raises an error.

o output open the file for writing. If the file existed it's content is
deleted first and a freshly opened empty file is ready to accept
commands and functions to write into the file. When a file is
opened this way no function or command trying to read from the
file can be used using the file number associated with the file.

ScriptBasic
Command and Function Reference

60

The file is opened in ASCII mode but the handling mode can be
changed to binary any time.

o append open a possibly existing file and write after the current
content. The same conditions apply as in the mode output, thus
you can not read the file, only write. The file is opened in ASCII
mode but the handling mode can be changed to binary any time.

o random open the file for reading and writing (textual mode). When
you open a file using this mode the file can be written and the
content of the existing file can be read. The file pointer can be
moved back and forth any time using the command SEEK and
thus quite complex file handling functions can be implemented.
If the file did not exist it is created.

o binary open the file for reading and writing (binary mode). This
mode is the same as random with the exception that the file is
opened in binary mode.

o socket open a socket. In this case the file name is NOT a file
name, but rather an Internet machine name and a port
separated by colon, like www.digital.com:80 You should not
specify any method, like http:// in front of the machine name,
as this command opens a TCP socket to the machine's port and
the protocol has to be implemented by the BASIC program.

 #i is the file number. After the file has been opened this number has to
be used in later file handling functions and commands, like CLOSE to
refer to the file. The # character is optional and is allowed for
compatibility with other BASIC languages. The number can be between
1 and 512. This number is quite big for most of the applications and
provides compatibility with VisualBasic.

 record_length is optional and specify the length of a record in the file.
The default record length is 1 byte. File pointer setting commands
usually work on records, thus SEEK, TRUNCATE and other commands
and functions accept arguments or return values as number of records.
The actual record length is not recorded anywhere thus the BASIC

ScriptBasic
Command and Function Reference

61

program has to remember the actual length of a record in a file. This is
not a BASIC program error to open a file with a different record size
than it was created, although this may certainly be a programming
error.

If the file number is specified as a variable and the variable value is set to
integer zero then the command will automatically find a usable file number
and set the variable to hold that value. Using any other expression of value
integer zero is an error.

OPEN DIRECTORY dir_name PATTERN pattern OPTION option AS
dn

Open a directory to retrieve the list of files.

 dir_name is the name of the directory.
 pattern is a wild card pattern to filter the file list.
 option is an integer value that can be composed AND-ing some of the

following values
o SbCollectDirectories Collect the directory names as well as file

names into the file list.
o SbCollectDots Collect the virtual . and .. directory names into the

list.
o SbCollectRecursively Collect the files from the directory and from

all the directories below.
o SbCollectFullPath The list will contain the full path to the file

names. This means that the file names returned by the function
NextFile will contain the directory path specified in the open
directory statement and therefore can be used as argument to
file handling commands and functions.

o SbCollectFiles Collect the files. This is the default behavior.
o SbSortBySize The files will be sorted by file size.
o SbSortByCreateTime The files will be sorted by creation time.

ScriptBasic
Command and Function Reference

62

o SbSortByAccessTime The files will be sorted by access time.
o SbSortByModifyTime The files will be sorted by modify time.
o SbSortByName The files will be sorted by name. The name used

for sorting is the bare file name without any path.
o SbSortByPath The files will be sorted by name including the path.

The path is the relative to the directory, which is currently
opened. This sorting option is different from the value
sbSortByName only when the value sbCollectRecursively is also
used.

o SbSortAscending Sort the file names in ascending order. This is
the default behavior.

o SbSortDescending Sort the file names in descending order.
o SbSortByNone Do not sort. Specify this value if you do not need

sorting. In this case directory opening can be much faster
especially for large directories.

 dn is the directory number used in later references to the opened
directory.

Note that this command can execute for a long time and consuming a lot of
memory especially when directory listing is requested recursively. When the
command is executed it collects the names of the files in the directory or
directories as requested and builds up an internal list of the file names in the
memory. The command NEXTFILE() uses the list to retrieve the next file
name from the list.

This implies to facts:

 The function NEXTFILE will not ever return a file name that the file was
created after, and did not exist when the command OPEN DIRECTORY was
executed.

 Using CLOSE DIRECTORY after the list of the files is not needed as
soon as possible is a good idea.

ScriptBasic
Command and Function Reference

63

Using a directory number that was already used and not released calling
CLOSE DIRECTORY raises an error.

If the list of the files in the directory can not be collected the command raises
error.

See also CLOSE DIRECTORY and NEXTFILE().

OPTION symbol value

Set the integer value of an option. The option can be any string without the
double quote. Option names are case insensitive in ScriptBasic.

This command has no other effect than storing the integer value in the option
symbol table. The commands or extenal modules may access the values and
may change their behavior accoring to the actual values associated with
option symbols.

You can retrieve the actual value of an option symbol using the function
OPTION()

OPTION("symbol")

Retrieve the actual value of an option symbol as an integer or undef if the
option was not set. Unlike in the command OPTION the argument of this
function should be double quoted.

pack("format",v1,v2,...,vn)

Pack list of arguments into a binary string.

The format strings can contain the packing control literals. Each of these
characters optionally take the next argument and convert to the specific binary
string format. The result is the concatenated sum of these strings.

ScriptBasic
Command and Function Reference

64

Some control characters do not take argument, but result a constant string by
their own.

 SZ the argument is stored as zero terminated string. If the argument
already contains zchar that is taken as termnator and the rest of the
string is ignored.

 S1 the argument is stored as a string. One byte length and maximum
255 byte strings. If the argument longer than 255 bytes only the first
255 bytes are used, and the rest is ignored.

 S2 same as S1 but with two bytes for the length.
 S3 same as S1 but with three bytes for the length.
 S4 same as S1 but with four bytes for the length.
 S5..8 the same as S1 but with 5..8 bytes for the length.
 Zn one or more zero characters, does not take argument. n can be 1,2,3

... positive numbers
 In integer number stored on n bytes. Low order byte first. If the number

does not fit into n bytes the higher bytes are chopped. If the number is
negative the high overflow bytes are filled with FF.

 C character (same as I1)
 Un same as In but for unsigned numbers.
 An store the argument as string on n bytes. If the argument is longer

than n bytes only the first n bytes are stored. If the argument is shorter
than n bytes the higher bytes are filled with space.

 R a real number.

See also UNPACK

PAUSE

This is a planned command.

PAUSE n

ScriptBasic
Command and Function Reference

65

Suspend the execution of the interpreter (process or thread) for n

milliseconds.

PI

This built-in constant is implemented as an argument less function. Returns
the approximate value of the constant PI which is the ratio of the
circumference of a circle to its diameter.

POP

Pop off one value from the GOSUB/RETURN stack. After this command a
RETURN will return to one level higher and to the place where it was called from.
For more information see the documentation of the command GOSUB and
RETURN.

POW

Calculates the x-th exponent of 10. If the result is within the range of an
integer value on the actual architecture then the result is returned as an
integer, otherwise it is returned as a real value.

POW(undef) is undef or raises an error if the option RaiseMatherror is set in bit
sbMathErrUndef.

PRINT [# fn ,] print_list

This command prints the elements of the print_list. The argument print_list
is a comma separated list of expressions. The expressions are evaluated one
after the other and are printed to the standard output or to the file.

The command prints the print_list to an opened file given by the file number
fn. If fn (along with the # character) is not specified the command prints to the
standard output. The file has to be opened to some "output" mode otherwise

ScriptBasic
Command and Function Reference

66

the command fails to print anything into the file. The command can also print
into an opened socket (a file opened for mode socket). If the file is not opened
then the expressions in the list print_list are not evaluated and the command
actually does nothing. If the file is opened, but not for a kind of "output" mode
then the expressions in the print_list are evaluated but the printing does not
happen. Neither printing to a non-opened file number nor printing to a file
opened for some read-only mode generates error.

If there is no print_list specified the command prints a new line. In other
words if the keyword PRINT stands on the command with the optional # and the
file number but without anything to print then the command will print a new
line character.

Note that unlike other BASIC implementations the command PRINT does not
accept print list formatters, like AT or semicolons and does not tabify the
output. The arguments are printed to the file or to the standard output one
after the other without any intrinsic space or tab added. Also the print
statements does not print a new line at the end of the print list unless the new
line character is explicitly defined or if there is no print list at all following the
command.

RANDOMIZE

Seed the random number generator. If the command is presented without
argument the random number generator is seed with the actual time. If
argument is provided the random number generator is seed with the argument
following the keyword RANDOMIZE.

ref v1 = v2

Assign a variable to reference another variable. Following this command
altering one of the variables alters both variables. In other words this
command can be used to define a kind of alias to a variable. The mechanism

ScriptBasic
Command and Function Reference

67

is the same as local variable of a function is an alias of a variable passed to
the function as actual argument. The difference is that this reference is not
automatically released when some function returns, but rather it is alive so
long as long the referencing variable is not undefined saying undef variable in
a command.

To have an alias to a variable is not something of a great value though. It
becomes a real player when the 'variable' is not just an ordinary 'named'
variable but rather part of an array (or associative array). Using this
mechanisms the programmer can build up arbitrary complex memory
structures without caring such complex things as pointers for example in C.
This is a simple BASIC way of building up complex memory structures.

REPEAT

This command implements a loop which is repeated so long as long the
expression standing after the loop closing line UNTIL becomes true. The loop
starts with a line containing the keyword REPEAT and finishes with the line UNTIL

expression.

repeat
 ...
 commands to repeat
 ...
until expression

The expression is evaluated each time after the loop is executed. This means
that the commands inside the loop are executed at least once.

This kind of loop syntax is not usual in BASIC dialects but can be found in
languages like PASCAL. Implementing this loop in ScriptBasic helps those
programmers, who have PASCAL experience.

See also WHILE, DOUNTIL, DOWHILE, REPEAT, DO and FOR.

ScriptBasic
Command and Function Reference

68

REPLACE(string, string, string [,number] [,position])

REPLACE(base_string,search_string,replace_string [,number_of_replaces]
[,position])

This function replaces one or more occurrences of a sub-string in a string.
REPLACE(a,b,c) searches the string a seeking for occurrences of sub-string b

and replaces each of them with the string c.

The fourth and fifth arguments are optional. The fourth argument specifies the
number of replaces to be performed. If this is missing or is undef then all
occurrences of string b will be replaced. The fifth argument may specify the
start position of the operation. For example the function call

REPLACE("alabama mama", "a","x",3,5)

will replace only three occurrences of string "a" starting at position 5. The
result is "alabxmx mxma".

RESET

This command closes all files opened by the current BASIC program. This
command usually exists in most BASIC implementation. There is no need to
close a file before a BASIC program finishes, because the interpreter
automatically closes all files that were opened by the program.

RESET DIRECTORY [#] dn

Reset the directory file name list and start from the first file name when the
next call to NEXTFILE() is performed.

See also OPEN DIRECTORY, CLOSE DIRECTORY, NEXTFILE(), EOD().

RESUME [label | next]

Resume the program execution after handling the error. RESUME without
argument tries to execute the same line again that caused the error. RESUME

ScriptBasic
Command and Function Reference

69

NEXT tries to continue execution after the line that caused the error. RESUME
label tries to continue execution at the specified label.

See also ON ERROR GOTO, ON ERROR RESUME and ERROR.

RETURN

Return from a subroutine started with GOSUB. For more information see the
documentation of the command GOSUB.

REWIND [#]fn

Positions the file cursor to the start of the file. This is the same as SEEK fn,0 or
SEEK #fn,0

The argument to the statement is the file number used in the OPEN statement
to open the file. The character # is optional and can only be used for
compatibility reasons.

RIGHT(string,len)

Creates the right of a string. The first argument is the string. The second
argument is the number of characters that should be put into the result. If this
value is larger than the number of characters in the string then all the string is
returned.

See also MID(), LEFT().

details

RND

Returns a random number as generated by the C function rand(). Note that
this random number generator usually provided by the libraries implemented
for the C compiler or the operating system is not the best quality ones. If you

ScriptBasic
Command and Function Reference

70

need really good random number generator then you have to use some other
libraries that implement reliable RND functions.

ROUND

This function rounds its argument. The first argument is the number to round,
and the optional second argument specifies the number of fractional digits to
round to.

The function rounds to integer value if the second argument is missing.

The return value is long if the number of decimal places to keep is zero,
otherwise the return value is double.

Negative value for the number of decimal places results rounding to integer
value.

ROUND(undef) is undef or raises an error if the option RaiseMatherror is set in bit
sbMathErrUndef.

Also ROUND(val,undef) is equivalent to ROUND(value).

See also INT(), FRAC() and FIX()

RTRIM()

Remove the space from the right of the string.

SEC

This function accepts one argument that should express the time in number of
seconds since January 1, 1970 0:00 am and returns the seconds value of that
time. If the argument is missing the function uses the actual local time.

ScriptBasic
Command and Function Reference

71

SECANT

This is a planned function to calculate the secant of the argument.

SEEK fn,position

Go to a specified position in an open file. You can use this command to
position the file pointer to a specific position. The next read or write operation
performed on the file will be performed on that very position that was set using
the command SEEK. The first argument is the file number that was used in the
statement OPEN to open the file. The second argument is the position where
the file pointer is to be set.

The position is counted from the start of the file counting records. The actual
file pointer will be set after the record position. This means that if for example
you want to set the file pointer To the start of the file then you have to SEEK

fn,0. This will set the File pointer before the first record.

If there was no record length specified when the file was opened the counting
takes bytes. There is no special "record" structure of a file as it is usually
under UNIX or Windows NT. The record is merely the number of bytes treated
as a single unit specified during file opening.

SET FILE filename parameter=value

Set some of the parameters of a file. The parameter can be:

 owner set the owner of the file. This operation requires root permission
on UNIX or Administrator privileges on Windows NT. The value should
be the string representation of the UNIX user or the Windows NT
domain user.

 createtime
 modifytime
 accesstime

ScriptBasic
Command and Function Reference

72

 Set the time of the file. The value should be the file time in seconds
since January 1,1970. 00:00GMT.

If the command can not be executed an error is raised. Note that setting the
file owner also depends on the file system. For example FAT file system does
not store the owner of a file and thus can not be set.

Also setting the file time on some file system may be unsuccessful for values
that are successful under other file systems. This is because different file
systems store the file times using different possible start and end dates and
resolution. For example you can set a file to hold the creation time to be
January 1, 1970 0:00 under NTFS, but not under FAT.

The different file systems store the file times with different precision. Thus the
actual time set will be the closest time not later than the specified in the
command argument. For this reason the values returned by the functions
File***Time may not be the same that was specified in the SET FILE command
argument.

SET JOKER "c" TO "abcdefgh..."

Set a joker character to match certain characters when using the LIKE
operator. The joker character "c" can be one of the following characters

* # $ @ ? & % ! + / | < >

The string after the keyword TO should contain all the characters that the joker
character should match. To have the character to match only itself to be a
normal character say

SET NO JOKER "c"

See also SET [NO] WILD, LIKE (details), JOKER()

ScriptBasic
Command and Function Reference

73

SET WILD "c" TO "abcdefgh..."

Set a wild character to match certain characters when using the LIKE
operator. The wild character "c" can be one of the following characters

* # $ @ ? & % ! + / | < >

The string after the keyword TO should contain all the characters that the wild
card character should match. To have the character to match only itself to be
a normal character say

SET NO WILD "c"

See also SET [NO] JOKER, LIKE (details), JOKER()

SIN

Calculates the sine of the argument. If the result is within the range of an
integer value on the actual architecture then the result is returned as an
integer, otherwise it is returned as a real value.

SIN(undef) is undef or raises an error if the option RaiseMatherror is set in bit
sbMathErrUndef.

SLEEP(n)

Suspend the execution of the interpreter (process or thread) for n seconds.

Whenever the program has to wait for a few seconds it is a good idea to call
this function. Older BASIC programs originally designed for old personal
computers like Atari, Amiga, ZX Spectrum intend to use empty loop to wait
time to elapse. On modern computers this is a bad idea and should not be
done.

If you execute an empty loop to wait you consume CPU. Because the
program does not access any resource to wait for it actually consumes all the

ScriptBasic
Command and Function Reference

74

CPU time slots that are available. This means that the computer slows down,
does not respond to user actions timely.

Different computers run with different speed and an empty loop consuming
20sec on one machine may run 2 minutes on the other or just 10 millisec. You
can not reliably tell how much time there will be during the empty loop runs.

When you call SLEEP(n) the operating system is called telling it that the code
does not need the CPU for n seconds. During this time the program is
suspended and the operating system executes other programs as needed.
The code is guaranteed to return from the function SLEEP not sooner than n

seconds, but usually it does return before the second n+1 starts.

SPACE(n)

Return a string of length n containing spaces.

SPLIT string BY string TO var_1,var_2,var_3,...,var_n

Takes the string and splits into the variables using the second string as
delimiter.

SPLITA string BY string TO array

Split a string into an array using the second string as delimiter. If the string
has zero length the array becomes undefined. When the delimiter is zero
length string each array element will contain a single character of the string.

See also SPLIT

SPLITAQ string BY string QUOTE string TO array

Split a string into an array using the second string as delimiter. The delimited
fields may optionally be quoted with the third string. If the string to be split has

ScriptBasic
Command and Function Reference

75

zero length the array becomes undefined. When the delimiter is a zero length
string each array element will contain a single character of the string.

Leading and trailing delimiters are accepted and return an empty element in
the array. For example :-

 SPLITAQ ",'A,B',C," BY "," QUOTE "'" TO Result
will generate
 Result[0] = ""
 Result[1] = "A,B"
 Result[2] = "C"
 Result[3] = ""

Note that this kind of handling of trailing and leading empty elements is
different from the handling of the same by the command SPLIT and SPLITA
which do ignore those empty elements. This command is useful to handle
lines exported as CSV from Excel or similar application.

The QUOTE string is really a string and need not be a single character. If
there is an unmatched quote string in the string to be split then the rest of the
string until its end is considered quoted.

If there is an unmatched

See also SPLITA

This command was suggested and implemented by Andrew Kingwell
(Andrew.Kingwell@idstelecom.co.uk)

SQR

Calculates the square root of the argument.

If the result is within the range of an integer value on the actual architecture
then the result is returned as an integer, otherwise it is returned as a real
value.

ScriptBasic
Command and Function Reference

76

SQR(undef) is undef or raises an error if the option RaiseMatherror is set in bit
sbMathErrUndef.

If the argument is a negative number the result of the function is undef or the
function raises error if the option RaiseMathError has the bit sbMathErrDiv set.

If the square root of the argument is an integer number then the function
returns an integer number. In other cases the returned value is real even if the
argument itself is integer.

Note that this function has the opposite meaning in the language PASCAL,
namely the square of the number. This may cause some problem if you are
experienced in PASCAL programming. In that language SQRT notes the square
root of a number.

STOP

This command stops program execution. There is no possibility to restart
program execution after this command was executed.

See also END.

STR(n)

Converts a number to string. This function is rarely needed, because
conversion is done automatically. details

STRING(n,code)

Create a string of length n containing characters code. If code is a string then
the first character of the string is used to fill the result. Otherwise code is
converted to long and the ASCII code is used.

ScriptBasic
Command and Function Reference

77

STRREVERSE(string)

Return the reversed string (aka. all the characters in the string in reverse
order).

SUB fun()

This command should be used to define a subroutine. A subroutine is a piece
of code that can be called by the BASIC program from the main part or from a
function or subroutine.

SUB sub(a,b,c)
...
END SUB

The end of the subroutine is defined by the line containing the keywords END

SUB.

Note that functions and subroutines are not really different in ScriptBasic.
ScriptBasic allows you to return a value from a subroutine and to call a
function using the command CALL. It is just a convention to have separately SUB

and FUNCTION declarations.

For detailed information please read the documentation of the command
FUNCTION

swap a,b

Planned command.

This command swaps two variables.

SYSTEM(executable_program)

This function should be used to start an external program in a separate
process in asynchronous mode. In other words you can start a process and

ScriptBasic
Command and Function Reference

78

let it run by itself and not wait for the process to finish. After starting the new
process the BASIC program goes on parallel with the started external
program.

The return value of the function is the PID of the newly created process.

If the program specified by the argument can not be started then the return
value is zero. Under UNIX the program may return a valid PID even in this
case. This is because UNIX first makes a copy of the process that wants to
start another and then replaces the new process image with the program
image to be started. In this case the new process is created and the
command SYSTEM has no information on the fact that the new process was not
able to replace the executable image of itself. In this case, however, the child
process has a very short life.

TAN

This is a planned function to calculate the tangent of the argument.

TAN2

This is a planned function to calculate the tangent of the ratio of the two
arguments.

TEXTMODE [# fn] | input | output

Set an opened file handling to text mode.

The argument is either a file number with which the file was opened or one of
keywords input and output. In the latter case the standard input or output is
set.

See also BINMODE Set an opened file handling to text mode.

ScriptBasic
Command and Function Reference

79

TIMEVALUE

This function gets zero or more, at most six arguments and interprets them as
year, month, day, hour, minute and seconds and calculates the number of
seconds elapsed since January 1, 1970 till the time specified. If some
arguments are missing or undef the default values are the following:

 year = 1970
 month = January
 day = 1st
 hours = 0
 minutes = 0
 seconds = 0

TRIM()

Remove the space from both ends of the string.

TRUE

This built-in constant is implemented as an argument less function. Returns
the value true.

TRUNCATE fn,new_length

Truncate an opened file to the specified size. The first argument Has to be the
file number used in the OPEN statement opening the file. The second
argument is the number of records to be in the file after it is truncated.

The size of a record has to be specified when the file is opened. If the size Of
a record is not specified in number of bytes then the command TRUNCATE Does
truncate the file to the number of specified bytes instead of records. (In other
words the record length is one byte.)

ScriptBasic
Command and Function Reference

80

When the file is actually shorter than the length specified by the command
argument the command TRUNCATE automatically extends the file padding with
bytes containing the value 0.

TYPE

This function can be used to determine the type of an expression. The
function returns a numeric value that describes the type of the argument.
Although the numeric values are guaranteed to be the one defined here it is
recommended that you use the predefined symbolic constant values to
compare the return value of the function against. The function return value is
the following

 SbTypeUndef 0 if the argument is undef.
 SbTypeString 1 if the argument is string.
 SbTypeReal 2 if the argument is real.
 SbTypeInteger 3 if the argument is integer.
 SbTypeArray 4 if the argument is an array.

See also ISARRAY(), ISSTRING(), ISINTEGER(), ISREAL(), ISNUMERIC(),
IsDefined(), ISUNDEF(), ISEMPTY().

UBOUND

This function can be used to determine the highest occupied index of an
array. Note that arrays are increased in addressable indices automatically,
thus it is not an error to use a higher index that the value returned by the
function UBOUND. On the other hand all the element having index larger than the
returned value are undef.

The argument of this function has to be an array. If the argument is an
ordinary value, or a variable that is not an array the value returned by the
function will be undef.

ScriptBasic
Command and Function Reference

81

UBOUND(undef) is undef or raises an error if the option RaiseMatherror is set in bit
sbMathErrUndef.

See also LBOUND().

UCASE()

Uppercase a string.

UNDEF variable

Sets the value of a variable (or some other ScriptBasic left value) to be
undefined. This command can also be used to release the memory that was
occupied by an array when the variable holding the array is set to undef.

When this command is used as a function (with or without, but usually without
parentheses), it simply returns the value undef.

details

UNPACK string BY format TO v1,v2,...,vn

Unpack the binary string string using the format string into the variables. The
format string should have the same format as the format string the in the
function PACK().

VAL

Converts a string to numeric value. If the string is integer it returns an integer
value. If the string contains a number presentation which is a float number the
returned value is real. In case the argument is already numeric no conversion
is done.

VAL(undef) is undef or raises an error if the option RaiseMatherror is set in bit
sbMathErrUndef.

ScriptBasic
Command and Function Reference

82

WAITPID(PID,ExitCode)

This function should be used to test for the existence of a process.

The return value of the function is 0 if the process is still running. If the
process has exited (or failed in some way) the return value is 1 and the exit
code of the process is stored in ExitCode.

WEEKDAY

This function accepts one argument that should express the time in number of
seconds since January 1, 1970 0:00 am and returns the week day value of
that time. If the argument is missing the function uses the actual local time. In
other words it returns what day it is at the moment.

WHILE condition

Implements the 'while' loop as it is usually done in most basic
implementations. The loop starts with the command while and finished with
the line containing the keyword wend. The keyword while is followed by an
expression and the loop is executes so long as long the expression is
evaluated true.

while expression
 ...
 commands to repeat
 ...

wend

The expression is evaluated when the looping starts and each time the loop is
restarted. It means that the code between the while and wend lines may be
skipped totally if the expression evaluates to some false value during the first
evaluation before the execution starts the loop.

In case some condition makes it necessary to exit the loop from its middle
then the command GOTO can be used.

ScriptBasic
Command and Function Reference

83

ScriptBasic implements several looping constructs to be compatible with
different BASIC language dialects. Some constructs are even totally
interchangeable to let programmers with different BASIC experience use the
one that fit they the best. See also WHILE, DOUNTIL, DOWHILE, REPEAT,
DO and FOR.

YEAR

This function accepts one argument that should express the time in number of
seconds since January 1, 1970 0:00 am and returns the year value of that
time. If the argument is missing it uses the actual local time to calculate the
year value. In other words it returns the actual year.

YEARDAY

This function accepts one argument that should express the time in number of
seconds since January 1, 1970 0:00 am and returns the year-day value of that
time. This is actually the number of the day inside the year so that January 1st
is #1 and December 31 is #365 (or 366 in leap years). If the argument is
missing the function uses the actual local time.

ScriptBasic
Command and Function Reference

84

This page intentionally left blank

ScriptBasic
Command and Function Reference

85

Reserved Words

ABS ACOS ACOSECANT
ACTAN ADDDAY ADDHOUR
ADDMINUTE ADDMONTH ADDRESS
ADDSECOND ADDWEEK ADDYEAR
ALIAS AND AS
ASC ASECANT ASIN
ATAN ATN

BIN BINMODE BY
BYVAL

CALL CHDIR CHOMP
CHR CHR$ CINT
CLOSE CLOSEALL COMMAND
CONF CONST COS
COSECANT COTAN COTAN2
CRYPT CURDIR CVD
CVI CVL CVS

DAY DECLARE DELETE
DELTREE DIRECTORY DO

ELIF ELSE ELSEIF
ELSIF END ENDIF
ENVIRON ENVIRON$ EOD
EOF ERROR ERROR$
EVEN EXECUTE EXIT
EXP

ScriptBasic
Command and Function Reference

86

FALSE FILE FILEACCESSTIME
FILECOPY FILECREATETIME FILEEXISTS
FILELEN FILEMODIFYTIME FILEOWNER
FIX FOR FORK
FORMAT FORMATDATE FORMATTIME
FRAC FREEFILE FROM
FUNCTION

GCD GLOBAL GMTIME
GMTIMETOLOCALTIME GO GOSUB
GOTO

HCOS HCOSECANT HCTAN
HEX HEX$ HOSTNAME
HOUR HSECANT HSIN
HTAN

ScriptBasic
Command and Function Reference

87

ICALL IF IMAX
IMIN INPUT INSTR
INSTRREV INT ISARRAY
ISDEFINED ISDIRECTORY ISEMPTY
ISFILE ISINTEGER ISNUMERIC
ISREAL ISSTRING ISUNDEF

JOIN JOKER

KILL

LBOUND LCASE LCASE$
LCM LEFT LEFT$
LEN LET LIB
LIKE LINE LOC
LOCAL LOCALTIMETOGMTIME LOCK
LOF LOG LOG10
LOOP LOWER LOWER$
LTRIM LTRIM$

MAX MAXINT MID
MID$ MIN MININT
MINUTE MKD MKD$
MKDIR MKI MKI$
MKL MKL$ MKS
MKS$ MODULE MONTH
NAME NEXT NEXTFILE

NO NOT NOW
NULL

ScriptBasic
Command and Function Reference

88

OCT OCT$ ODD
ON OPEN OPTION
OR OUTPUT

PACK PATTERN PAUSE
PI POP POW
PRINT PRINTNL

QUOTE

RANDOMIZE REF REGION
REPEAT REPLACE RESET
RESUME RETURN REWIND
RIGHT RIGHT$ RND
ROUND RTRIM RTRIM$

ScriptBasic
Command and Function Reference

89

SEC SECANT SEEK
SET SGN SIN
SLEEP SPACE SPACE$
SPLIT SPLITA SPLITAQ
SQR STEP STOP
STR STR$ STRING
STRING$ STRREVERSE STRREVERSE$
SUB SWAP SYSTEM

TAN TAN2 TEXTMODE
THEN TIME TIMEVALUE
TO TRIM TRIM$
TRUE TRUNCATE TYPE

UBOUND UCASE UCASE$
UNDEF UNPACK UNTIL
UPPER UPPER$

VAL VAR

WAITPID WEEKDAY WEND
WHILE WILD

XOR

YEAR YEARDAY

ScriptBasic
Command and Function Reference

90

This page intentionally left blank

ScriptBasic
Command and Function Reference

91

Reserved Words - not yet implemented

BIN This is a planned function to convert the argument
number to binary format. (aka. format as a binary
number containing only 0 and 1 characters and return
this string)

GCD Mathematical function has become a reserved word, but
are not implemented.

LCM Mathematical function has become a reserved word, but
are not implemented.

ATN This is a planned function to calculate the arcus tangent
of the argument.

ATAN This is a planned function to calculate the arcus tangent
of the argument.

TAN This is a planned function to calculate the tangent of the
argument.

TAN2 This is a planned function to calculate the tangent of the
ratio of the two arguments.

COTAN This is a planned function to calculate the cotangent of
the argument.

COTAN2 This is a planned function to calculate the cotangent of
the ratio of the two arguments.

ACTAN This is a planned function to calculate the arcus
cotangent of the argument.

SECANT This is a planned function to calculate the secant of the
argument.

COSECANT This is a planned function to calculate the cosecant of

ScriptBasic
Command and Function Reference

92

the argument.

ASECANT This is a planned function to calculate the arcus secant
of the argument.

ACOSECANT This is a planned function to calculate the arcus
cosecant of the argument.

HSIN This is a planned function to calculate the sinus
hyperbolicus of the argument.

HCOS This is a planned function to calculate the cosinus
hyperbolicus of the argument.

HTAN This is a planned function to calculate the tangent
hyperbolicus of the argument.

HCTAN This is a planned function to calculate the cotangent
hyperbolicus of the argument.

HSECANT This is a planned function to calculate the secant
hyperbolicus of the argument.

HCOSECANT This is a planned function to calculate the cosecant
hyperbolicus of the argument.

MAX This is a planned function to select and return the
maximum of the arguments.

MIN This is a planned function to select and return the
minimum of the arguments.

IMAX This is a planned function to select and return the index
of the maximum of the arguments.

IMIN This is a planned function to select and return the index
of the minimum of the arguments.

CVD This is a planned function to convert the argument string
into a real number. (8 byte)

ScriptBasic
Command and Function Reference

93

CVI This is a planned function to convert the argument string
into an integer. (2 bytes)

CVL This is a planned function to convert the argument string
into an long integer. (4 bytes)

CVS This is a planned function to convert the argument string
into an integer. (4 byte)

MKD This is a planned function to convert the argument real
number to an 8 byte string. (8 byte)

MKI This is a planned function to convert the argument
integer number to a string. (2 byte)

MKS This is a planned function to converts a single-precision
number "n" into a string so it can later be retrieved from
a random-access file as a numeric value. (4 byte)

MKL This is a planned function converts a long-integer
number "n" into a string so it can later be retrieved from
a random-access file as a numeric value. (4-byte)

ScriptBasic
Command and Function Reference

94

This page intentionally left blank

ScriptBasic
Command and Function Reference

95

Appendix A: ASCII table

Control Codes

DEC HEX BIN Symbol HTML
Number

HTML
Name

Description

0 00 00000000 NUL � Null char

1 01 00000001 SOH Start of Heading

2 02 00000010 STX Start of Text

3 03 00000011 ETX End of Text

4 04 00000100 EOT End of Transmission

5 05 00000101 ENQ Enquiry

6 06 00000110 ACK Acknowledgment

7 07 00000111 BEL Bell

8 08 00001000 BS Back Space

9 09 00001001 HT 	 Horizontal Tab

10 0A 00001010 LF
 Line Feed

11 0B 00001011 VT Vertical Tab

12 0C 00001100 FF  Form Feed

13 0D 00001101 CR  Carriage Return

14 0E 00001110 SO Shift Out / X-On

15 0F 00001111 SI Shift In / X-Off

16 10 00010000 DLE Data Line Escape

17 11 00010001 DC1 Device Control 1 (oft. XON)

18 12 00010010 DC2 Device Control 2

19 13 00010011 DC3 Device Control 3 (oft. XOFF)

20 14 00010100 DC4 Device Control 4

21 15 00010101 NAK Negative Acknowledgement

22 16 00010110 SYN Synchronous Idle

23 17 00010111 ETB End of Transmit Block

24 18 00011000 CAN Cancel

25 19 00011001 EM End of Medium

26 1A 00011010 SUB Substitute

27 1B 00011011 ESC Escape

28 1C 00011100 FS File Separator

29 1D 00011101 GS Group Separator

30 1E 00011110 RS Record Separator

31 1F 00011111 US Unit Separator

ScriptBasic
Command and Function Reference

96

Standard (7-bit) Character Set

DEC HEX BIN Symbol HTML
Number

HTML
Name

Description

32 20 00100000 Space

33 21 00100001 ! ! Exclamation mark

34 22 00100010 " " " Double quotes

35 23 00100011 # # Number

36 24 00100100 $ $ Dollar

37 25 00100101 % % Percentage sign

38 26 00100110 & & & Ampersand

39 27 00100111 ' ' Single quote

40 28 00101000 ((Open parenthesis

41 29 00101001)) Close parenthesis

42 2A 00101010 * * Asterisk

43 2B 00101011 + + Plus

44 2C 00101100 , , Comma

45 2D 00101101 - - Hyphen

46 2E 00101110 . . Period or full stop

47 2F 00101111 / / Slash or divide

48 30 00110000 0 0 Zero

49 31 00110001 1 1 One

50 32 00110010 2 2 Two

51 33 00110011 3 3 Three

52 34 00110100 4 4 Four

53 35 00110101 5 5 Five

54 36 00110110 6 6 Six

55 37 00110111 7 7 Seven

56 38 00111000 8 8 Eight

57 39 00111001 9 9 Nine

58 3A 00111010 : : Colon

59 3B 00111011 ; ; Semicolon

60 3C 00111100 < < < Less

61 3D 00111101 = = Equals

62 3E 00111110 > > > Greater than

63 3F 00111111 ? ? Question mark

64 40 01000000 @ @ At symbol

65 41 01000001 A A Uppercase A

ScriptBasic
Command and Function Reference

97

DEC HEX BIN Symbol HTML
Number

HTML
Name

Description

66 42 01000010 B B Uppercase B

67 43 01000011 C C Uppercase C

68 44 01000100 D D Uppercase D

69 45 01000101 E E Uppercase E

70 46 01000110 F F Uppercase F

71 47 01000111 G G Uppercase G

72 48 01001000 H H Uppercase H

73 49 01001001 I I Uppercase I

74 4A 01001010 J J Uppercase J

75 4B 01001011 K K Uppercase K

76 4C 01001100 L L Uppercase L

77 4D 01001101 M M Uppercase M

78 4E 01001110 N N Uppercase N

79 4F 01001111 O O Uppercase O

80 50 01010000 P P Uppercase P

81 51 01010001 Q Q Uppercase Q

82 52 01010010 R R Uppercase R

83 53 01010011 S S Uppercase S

84 54 01010100 T T Uppercase T

85 55 01010101 U U Uppercase U

86 56 01010110 V V Uppercase V

87 57 01010111 W W Uppercase W

88 58 01011000 X X Uppercase X

89 59 01011001 Y Y Uppercase Y

90 5A 01011010 Z Z Uppercase Z

91 5B 01011011 [[Opening bracket

92 5C 01011100 \ \ Backslash

93 5D 01011101]] Closing bracket

94 5E 01011110 ^ ^ Caret - circumflex

95 5F 01011111 _ _ Underscore

96 60 01100000 ` ` Grave accent

97 61 01100001 a a Lowercase a

98 62 01100010 b b Lowercase b

99 63 01100011 c c Lowercase c

100 64 01100100 d d Lowercase d

101 65 01100101 e e Lowercase e

102 66 01100110 f f Lowercase f

103 67 01100111 g g Lowercase g

104 68 01101000 h h Lowercase h

ScriptBasic
Command and Function Reference

98

DEC HEX BIN Symbol HTML
Number

HTML
Name

Description

105 69 01101001 i i Lowercase i

106 6A 01101010 j j Lowercase j

107 6B 01101011 k k Lowercase k

108 6C 01101100 l l Lowercase l

109 6D 01101101 m m Lowercase m

110 6E 01101110 n n Lowercase n

111 6F 01101111 o o Lowercase o

112 70 01110000 p p Lowercase p

113 71 01110001 q q Lowercase q

114 72 01110010 r r Lowercase r

115 73 01110011 s s Lowercase s

116 74 01110100 t t Lowercase t

117 75 01110101 u u Lowercase u

118 76 01110110 v v Lowercase v

119 77 01110111 w w Lowercase w

120 78 01111000 x x Lowercase x

121 79 01111001 y y Lowercase y

122 7A 01111010 z z Lowercase z

123 7B 01111011 { { Opening brace

124 7C 01111100 | | Vertical bar

125 7D 01111101 } } Closing brace

126 7E 01111110 ~ ~ Tilde

127 7F 01111111 Delete

ScriptBasic
Command and Function Reference

99

Extended (8-bit) Character Set

DEC HEX BIN Symbol HTML
Number

HTML
Name

Description

128 80 10000000 € € € Euro sign

129 81 10000001

130 82 10000010 ‚ ‚ ‚ Single low-9 quotation mark

131 83 10000011 ƒ ƒ ƒ Latin small letter f with hook

132 84 10000100 „ „ „ Double low-9 quotation mark

133 85 10000101 … … … Horizontal ellipsis

134 86 10000110 † † † Dagger

135 87 10000111 ‡ ‡ ‡ Double dagger

136 88 10001000 ˆ ˆ ˆ Modifier letter circumflex accent

137 89 10001001 ‰ ‰ ‰ Per mille sign

138 8A 10001010 Š Š Š Latin capital letter S with caron

139 8B 10001011 ‹ ‹ ‹ Single left-pointing angle quotation

140 8C 10001100 Œ Œ Œ Latin capital ligature OE

141 8D 10001101

142 8E 10001110 Ž Ž Latin captial letter Z with caron

143 8F 10001111

144 90 10010000

145 91 10010001 ‘ ‘ ‘ Left single quotation mark

146 92 10010010 ’ ’ ’ Right single quotation mark

147 93 10010011 “ “ “ Left double quotation mark

148 94 10010100 ” ” ” Right double quotation mark

149 95 10010101 • • • Bullet

150 96 10010110 – – – En dash

151 97 10010111 — — — Em dash

152 98 10011000 ˜ ˜ ˜ Small tilde

153 99 10011001 ™ ™ ™ Trade mark sign

154 9A 10011010 š š š Latin small letter S with caron

155 9B 10011011 › › › Single right-pointing angle quotation
mark

156 9C 10011100 œ œ œ Latin small ligature oe

157 9D 10011101

158 9E 10011110 ž ž Latin small letter z with caron

159 9F 10011111 Ÿ Ÿ ÿ Latin capital letter Y with diaeresis

160 A0 10100000 Non-breaking space

ScriptBasic
Command and Function Reference

100

DEC HEX BIN Symbol HTML
Number

HTML
Name

Description

161 A1 10100001 ¡ ¡ ¡ Inverted exclamation mark

162 A2 10100010 ¢ ¢ ¢ Cent sign

163 A3 10100011 £ £ £ Pound sign

164 A4 10100100 ¤ ¤ ¤ Currency sign

165 A5 10100101 ¥ ¥ ¥ Yen sign

166 A6 10100110 ¦ ¦ ¦ Pipe, Broken vertical bar

167 A7 10100111 § § § Section sign

168 A8 10101000 ¨ ¨ ¨ Spacing diaeresis - umlaut

169 A9 10101001 © © © Copyright sign

170 AA 10101010 ª ª ª Feminine ordinal indicator

171 AB 10101011 « « « Left double angle quotes

172 AC 10101100 ¬ ¬ ¬ Not sign

173 AD 10101101 ­ ­ Soft hyphen

174 AE 10101110 ® ® ® Registered trade mark sign

175 AF 10101111 ¯ ¯ ¯ Spacing macron - overline

176 B0 10110000 ° ° ° Degree sign

177 B1 10110001 ± ± ± Plus-or-minus sign

178 B2 10110010 ² ² ² Superscript two - squared

179 B3 10110011 ³ ³ ³ Superscript three - cubed

180 B4 10110100 ´ ´ ´ Acute accent - spacing acute

181 B5 10110101 µ µ µ Micro sign

182 B6 10110110 ¶ ¶ ¶ Pilcrow sign - paragraph sign

183 B7 10110111 · · · Middle dot - Georgian comma

184 B8 10111000 ¸ ¸ ¸ Spacing cedilla

185 B9 10111001 ¹ ¹ ¹ Superscript one

186 BA 10111010 º º º Masculine ordinal indicator

187 BB 10111011 » » » Right double angle quotes

188 BC 10111100 ¼ ¼ ¼ Fraction one quarter

189 BD 10111101 ½ ½ ½ Fraction one half

190 BE 10111110 ¾ ¾ ¾ Fraction three quarters

191 BF 10111111 ¿ ¿ ¿ Inverted question mark

192 C0 11000000 À À À Latin capital letter A with grave

193 C1 11000001 Á Á Á Latin capital letter A with acute

194 C2 11000010 Â Â Â Latin capital letter A with circumflex

195 C3 11000011 Ã Ã Ã Latin capital letter A with tilde

196 C4 11000100 Ä Ä Ä Latin capital letter A with diaeresis

197 C5 11000101 Å Å Å Latin capital letter A with ring above

198 C6 11000110 Æ Æ Æ Latin capital letter AE

199 C7 11000111 Ç Ç Ç Latin capital letter C with cedilla

ScriptBasic
Command and Function Reference

101

DEC HEX BIN Symbol HTML
Number

HTML
Name

Description

200 C8 11001000 È È È Latin capital letter E with grave

201 C9 11001001 É É É Latin capital letter E with acute

202 CA 11001010 Ê Ê Ê Latin capital letter E with circumflex

203 CB 11001011 Ë Ë Ë Latin capital letter E with diaeresis

204 CC 11001100 Ì Ì Ì Latin capital letter I with grave

205 CD 11001101 Í Í Í Latin capital letter I with acute

206 CE 11001110 Î Î Î Latin capital letter I with circumflex

207 CF 11001111 Ï Ï Ï Latin capital letter I with diaeresis

208 D0 11010000 Ð Ð Ð Latin capital letter ETH

209 D1 11010001 Ñ Ñ Ñ Latin capital letter N with tilde

210 D2 11010010 Ò Ò Ò Latin capital letter O with grave

211 D3 11010011 Ó Ó Ó Latin capital letter O with acute

212 D4 11010100 Ô Ô Ô Latin capital letter O with circumflex

213 D5 11010101 Õ Õ Õ Latin capital letter O with tilde

214 D6 11010110 Ö Ö Ö Latin capital letter O with diaeresis

215 D7 11010111 × × × Multiplication sign

216 D8 11011000 Ø Ø Ø Latin capital letter O with slash

217 D9 11011001 Ù Ù Ù Latin capital letter U with grave

218 DA 11011010 Ú Ú Ú Latin capital letter U with acute

219 DB 11011011 Û Û Û Latin capital letter U with circumflex

220 DC 11011100 Ü Ü Ü Latin capital letter U with diaeresis

221 DD 11011101 Ý Ý Ý Latin capital letter Y with acute

222 DE 11011110 Þ Þ Þ Latin capital letter THORN

223 DF 11011111 ß ß ß Latin small letter sharp s - ess-zed

224 E0 11100000 à à à Latin small letter a with grave

225 E1 11100001 á á á Latin small letter a with acute

226 E2 11100010 â â â Latin small letter a with circumflex

227 E3 11100011 ã ã ã Latin small letter a with tilde

228 E4 11100100 ä ä ä Latin small letter a with diaeresis

229 E5 11100101 å å å Latin small letter a with ring above

230 E6 11100110 æ æ æ Latin small letter ae

231 E7 11100111 ç ç ç Latin small letter c with cedilla

232 E8 11101000 è è è Latin small letter e with grave

233 E9 11101001 é é é Latin small letter e with acute

234 EA 11101010 ê ê ê Latin small letter e with circumflex

235 EB 11101011 ë ë ë Latin small letter e with diaeresis

236 EC 11101100 ì ì ì Latin small letter i with grave

237 ED 11101101 í í í Latin small letter i with acute

238 EE 11101110 î î î Latin small letter i with circumflex

ScriptBasic
Command and Function Reference

102

DEC HEX BIN Symbol HTML
Number

HTML
Name

Description

239 EF 11101111 ï ï ï Latin small letter i with diaeresis

240 F0 11110000 ð ð ð Latin small letter eth

241 F1 11110001 ñ ñ ñ Latin small letter n with tilde

242 F2 11110010 ò ò ò Latin small letter o with grave

243 F3 11110011 ó ó ó Latin small letter o with acute

244 F4 11110100 ô ô ô Latin small letter o with circumflex

245 F5 11110101 õ õ õ Latin small letter o with tilde

246 F6 11110110 ö ö ö Latin small letter o with diaeresis

247 F7 11110111 ÷ ÷ ÷ Division sign

248 F8 11111000 ø ø ø Latin small letter o with slash

249 F9 11111001 ù ù ù Latin small letter u with grave

250 FA 11111010 ú ú ú Latin small letter u with acute

251 FB 11111011 û û û Latin small letter u with circumflex

252 FC 11111100 ü ü ü Latin small letter u with diaeresis

253 FD 11111101 ý ý ý Latin small letter y with acute

254 FE 11111110 þ þ þ Latin small letter thorn

255 FF 11111111 ÿ ÿ ÿ Latin small letter y with diaeresis

